論文の概要: Autoencoder-based General Purpose Representation Learning for Customer Embedding
- arxiv url: http://arxiv.org/abs/2402.18164v2
- Date: Tue, 04 Feb 2025 13:17:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 14:55:33.456968
- Title: Autoencoder-based General Purpose Representation Learning for Customer Embedding
- Title(参考訳): オートエンコーダに基づくユーザ埋め込みのための汎用表現学習
- Authors: Jan Henrik Bertrand, David B. Hoffmann, Jacopo Pio Gargano, Laurent Mombaerts, Jonathan Taws,
- Abstract要約: 多層契約型オートエンコーダの正規化項を計算する新しい手法であるDEEPCAEを導入する。
DEEPCAEは、復元性能と下流予測性能の両方において、他のテストされたオートエンコーダのバリエーションよりも優れていることを実証的に示す。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Recent advances in representation learning have successfully leveraged the underlying domain-specific structure of data across various fields. However, representing diverse and complex entities stored in tabular format within a latent space remains challenging. In this paper, we introduce DEEPCAE, a novel method for calculating the regularization term for multi-layer contractive autoencoders (CAEs). Additionally, we formalize a general-purpose entity embedding framework and use it to empirically show that DEEPCAE outperforms all other tested autoencoder variants in both reconstruction performance and downstream prediction performance. Notably, when compared to a stacked CAE across 13 datasets, DEEPCAE achieves a 34% improvement in reconstruction error.
- Abstract(参考訳): 表現学習の最近の進歩は、様々な分野にわたる基礎となる領域固有のデータ構造を活用することに成功している。
しかし、多様で複雑なエンティティを潜在空間内に表形式で格納することは依然として困難である。
本稿では,多層契約型オートエンコーダ(CAE)の正規化項を計算する新しい手法であるDEEPCAEを紹介する。
さらに、汎用エンティティ埋め込みフレームワークを形式化し、DEEPCAEが再現性能と下流予測性能の両方において、他のテストされたオートエンコーダのバリエーションよりも優れていることを実証的に示す。
特に、13データセットで積み重ねられたCAEと比較して、DEEPCAEは再構築エラーが34%改善されている。
関連論文リスト
- Adaptable Embeddings Network (AEN) [49.1574468325115]
我々はカーネル密度推定(KDE)を用いた新しいデュアルエンコーダアーキテクチャであるAdaptable Embeddings Networks (AEN)を紹介する。
AENは、再トレーニングせずに分類基準のランタイム適応を可能にし、非自己回帰的である。
アーキテクチャのプリプロセスとキャッシュ条件の埋め込み能力は、エッジコンピューティングアプリケーションやリアルタイム監視システムに最適である。
論文 参考訳(メタデータ) (2024-11-21T02:15:52Z) - Any Image Restoration with Efficient Automatic Degradation Adaptation [132.81912195537433]
本研究は, 各種劣化の相似性を有効かつ包括的修復に活用し, 共同埋設を実現する統一的な方法を提案する。
我々のネットワークは、モデルの複雑さをトレーニング可能なパラメータで約82%、FLOPで約85%削減しつつ、新しいSOTAレコードを設定している。
論文 参考訳(メタデータ) (2024-07-18T10:26:53Z) - Inference Optimization of Foundation Models on AI Accelerators [68.24450520773688]
トランスフォーマーアーキテクチャを備えた大規模言語モデル(LLM)を含む強力な基礎モデルは、ジェネレーティブAIの新たな時代を支えている。
モデルパラメータの数が数十億に達すると、実際のシナリオにおける推論コストと高いレイテンシーが排除される。
このチュートリアルでは、AIアクセラレータを用いた補完推論最適化テクニックに関する包括的な議論を行っている。
論文 参考訳(メタデータ) (2024-07-12T09:24:34Z) - Disentanglement via Latent Quantization [60.37109712033694]
本研究では,組織化された潜在空間からの符号化と復号化に向けた帰納的バイアスを構築する。
本稿では,基本データレコーダ (vanilla autoencoder) と潜時再構成 (InfoGAN) 生成モデルの両方に追加することで,このアプローチの広範な適用性を実証する。
論文 参考訳(メタデータ) (2023-05-28T06:30:29Z) - DA-VEGAN: Differentiably Augmenting VAE-GAN for microstructure
reconstruction from extremely small data sets [110.60233593474796]
DA-VEGANは2つの中心的なイノベーションを持つモデルである。
$beta$-variational autoencoderはハイブリッドGANアーキテクチャに組み込まれている。
このアーキテクチャに特化して、独自の差別化可能なデータ拡張スキームが開発されている。
論文 参考訳(メタデータ) (2023-02-17T08:49:09Z) - Hierarchical Point Cloud Encoding and Decoding with Lightweight
Self-Attention based Model [22.338247335791095]
SA-CNNは、ポイントクラウドデータの表現学習のための自己アテンションベースのエンコーディングおよびデコードアーキテクチャである。
SA-CNNは, 分類, 部分分割, 再構成, 形状検索, 教師なし分類など, 幅広い応用が可能であることを実証する。
論文 参考訳(メタデータ) (2022-02-13T21:10:06Z) - AEFE: Automatic Embedded Feature Engineering for Categorical Features [4.310748698480341]
本稿では,カスタムパラダイム機能構築や複数機能選択など,さまざまなコンポーネントから構成されるカテゴリ機能を表現するための自動機能エンジニアリングフレームワークを提案する。
いくつかの典型的なeコマースデータセットで実施された実験は、我々の手法が古典的な機械学習モデルや最先端のディープラーニングモデルよりも優れていることを示している。
論文 参考訳(メタデータ) (2021-10-19T07:22:59Z) - Self-Supervised Variational Auto-Encoders [10.482805367361818]
自己教師付き変分自動エンコーダ(self-supervised Variational Auto-Encoder)と呼ばれる新しい生成モデルについて述べる。
このモデルのクラスは、目的関数を単純化しながら、条件付きサンプリングと条件なしサンプリングの両方を実行することができる。
本稿では,3つのベンチマーク画像データ(Cifar10, Imagenette64, CelebA)に対する提案手法の性能について述べる。
論文 参考訳(メタデータ) (2020-10-05T13:42:28Z) - Structure by Architecture: Structured Representations without
Regularization [31.75200752252397]
生成モデルなどの下流タスクにオートエンコーダを用いた自己教師型表現学習の課題について検討する。
我々はアグレッシブな正規化を必要とせずに構造化表現を学習できる新しいオートエンコーダアーキテクチャを設計する。
これらのモデルが、生成、絡み合い、外挿を含む様々な下流タスクの結果を改善する表現をいかに学習するかを実証する。
論文 参考訳(メタデータ) (2020-06-14T04:37:08Z) - NAS-Count: Counting-by-Density with Neural Architecture Search [74.92941571724525]
ニューラルアーキテクチャサーチ(NAS)を用いたカウントモデルの設計を自動化する
エンド・ツー・エンドの検索エンコーダ・デコーダアーキテクチャであるAutomatic Multi-Scale Network(AMSNet)を導入する。
論文 参考訳(メタデータ) (2020-02-29T09:18:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。