Okapi: Generalising Better by Making Statistical Matches Match
- URL: http://arxiv.org/abs/2211.05236v1
- Date: Mon, 7 Nov 2022 12:41:17 GMT
- Title: Okapi: Generalising Better by Making Statistical Matches Match
- Authors: Myles Bartlett, Sara Romiti, Viktoriia Sharmanska, Novi Quadrianto
- Abstract summary: Okapi is a simple, efficient, and general method for robust semi-supervised learning based on online statistical matching.
Our method uses a nearest-neighbours-based matching procedure to generate cross-domain views for a consistency loss.
We show that it is in fact possible to leverage additional unlabelled data to improve upon empirical risk minimisation.
- Score: 7.392460712829188
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose Okapi, a simple, efficient, and general method for robust
semi-supervised learning based on online statistical matching. Our method uses
a nearest-neighbours-based matching procedure to generate cross-domain views
for a consistency loss, while eliminating statistical outliers. In order to
perform the online matching in a runtime- and memory-efficient way, we draw
upon the self-supervised literature and combine a memory bank with a
slow-moving momentum encoder. The consistency loss is applied within the
feature space, rather than on the predictive distribution, making the method
agnostic to both the modality and the task in question. We experiment on the
WILDS 2.0 datasets Sagawa et al., which significantly expands the range of
modalities, applications, and shifts available for studying and benchmarking
real-world unsupervised adaptation. Contrary to Sagawa et al., we show that it
is in fact possible to leverage additional unlabelled data to improve upon
empirical risk minimisation (ERM) results with the right method. Our method
outperforms the baseline methods in terms of out-of-distribution (OOD)
generalisation on the iWildCam (a multi-class classification task) and
PovertyMap (a regression task) image datasets as well as the CivilComments (a
binary classification task) text dataset. Furthermore, from a qualitative
perspective, we show the matches obtained from the learned encoder are strongly
semantically related. Code for our paper is publicly available at
https://github.com/wearepal/okapi/.
Related papers
- Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
Cross-modal retrieval relies on well-matched large-scale datasets that are laborious in practice.
We introduce a novel noisy correspondence learning framework, namely textbfSelf-textbfReinforcing textbfErrors textbfMitigation (SREM)
arXiv Detail & Related papers (2023-12-27T09:03:43Z) - Sample and Predict Your Latent: Modality-free Sequential Disentanglement
via Contrastive Estimation [2.7759072740347017]
We introduce a self-supervised sequential disentanglement framework based on contrastive estimation with no external signals.
In practice, we propose a unified, efficient, and easy-to-code sampling strategy for semantically similar and dissimilar views of the data.
Our method presents state-of-the-art results in comparison to existing techniques.
arXiv Detail & Related papers (2023-05-25T10:50:30Z) - Divide and Contrast: Source-free Domain Adaptation via Adaptive
Contrastive Learning [122.62311703151215]
Divide and Contrast (DaC) aims to connect the good ends of both worlds while bypassing their limitations.
DaC divides the target data into source-like and target-specific samples, where either group of samples is treated with tailored goals.
We further align the source-like domain with the target-specific samples using a memory bank-based Maximum Mean Discrepancy (MMD) loss to reduce the distribution mismatch.
arXiv Detail & Related papers (2022-11-12T09:21:49Z) - Deep Active Ensemble Sampling For Image Classification [8.31483061185317]
Active learning frameworks aim to reduce the cost of data annotation by actively requesting the labeling for the most informative data points.
Some proposed approaches include uncertainty-based techniques, geometric methods, implicit combination of uncertainty-based and geometric approaches.
We present an innovative integration of recent progress in both uncertainty-based and geometric frameworks to enable an efficient exploration/exploitation trade-off in sample selection strategy.
Our framework provides two advantages: (1) accurate posterior estimation, and (2) tune-able trade-off between computational overhead and higher accuracy.
arXiv Detail & Related papers (2022-10-11T20:20:20Z) - Bi-level Alignment for Cross-Domain Crowd Counting [113.78303285148041]
Current methods rely on external data for training an auxiliary task or apply an expensive coarse-to-fine estimation.
We develop a new adversarial learning based method, which is simple and efficient to apply.
We evaluate our approach on five real-world crowd counting benchmarks, where we outperform existing approaches by a large margin.
arXiv Detail & Related papers (2022-05-12T02:23:25Z) - Revisiting LSTM Networks for Semi-Supervised Text Classification via
Mixed Objective Function [106.69643619725652]
We develop a training strategy that allows even a simple BiLSTM model, when trained with cross-entropy loss, to achieve competitive results.
We report state-of-the-art results for text classification task on several benchmark datasets.
arXiv Detail & Related papers (2020-09-08T21:55:22Z) - Evaluating Prediction-Time Batch Normalization for Robustness under
Covariate Shift [81.74795324629712]
We call prediction-time batch normalization, which significantly improves model accuracy and calibration under covariate shift.
We show that prediction-time batch normalization provides complementary benefits to existing state-of-the-art approaches for improving robustness.
The method has mixed results when used alongside pre-training, and does not seem to perform as well under more natural types of dataset shift.
arXiv Detail & Related papers (2020-06-19T05:08:43Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
A popular transductive inference technique for few-shot metric-based approaches, is to update the prototype of each class with the mean of the most confident query examples.
We propose to meta-learn the confidence for each query sample, to assign optimal weights to unlabeled queries.
We validate our few-shot learning model with meta-learned confidence on four benchmark datasets.
arXiv Detail & Related papers (2020-02-27T10:22:17Z) - Domain Adaptive Bootstrap Aggregating [5.444459446244819]
bootstrap aggregating, or bagging, is a popular method for improving stability of predictive algorithms.
This article proposes a domain adaptive bagging method coupled with a new iterative nearest neighbor sampler.
arXiv Detail & Related papers (2020-01-12T20:02:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.