論文の概要: NToP: NeRF-Powered Large-scale Dataset Generation for 2D and 3D Human Pose Estimation in Top-View Fisheye Images
- arxiv url: http://arxiv.org/abs/2402.18196v2
- Date: Wed, 24 Apr 2024 15:16:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-26 20:58:26.826250
- Title: NToP: NeRF-Powered Large-scale Dataset Generation for 2D and 3D Human Pose Estimation in Top-View Fisheye Images
- Title(参考訳): NToP:トップビュー魚眼画像における2次元・3次元人物位置推定のためのNeRFを用いた大規模データセット生成
- Authors: Jingrui Yu, Dipankar Nandi, Roman Seidel, Gangolf Hirtz,
- Abstract要約: 魚眼カメラを用いたトップビューでのヒューマンポーズ推定(HPE)は、有望で革新的なアプリケーションドメインを示す。
我々は、Neural Radiance Fields(NeRF)技術を利用して、人間のポーズデータセットを生成するための包括的なパイプラインを確立する。
- 参考スコア(独自算出の注目度): 1.86413150130483
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Human pose estimation (HPE) in the top-view using fisheye cameras presents a promising and innovative application domain. However, the availability of datasets capturing this viewpoint is extremely limited, especially those with high-quality 2D and 3D keypoint annotations. Addressing this gap, we leverage the capabilities of Neural Radiance Fields (NeRF) technique to establish a comprehensive pipeline for generating human pose datasets from existing 2D and 3D datasets, specifically tailored for the top-view fisheye perspective. Through this pipeline, we create a novel dataset NToP570K (NeRF-powered Top-view human Pose dataset for fisheye cameras with over 570 thousand images), and conduct an extensive evaluation of its efficacy in enhancing neural networks for 2D and 3D top-view human pose estimation. A pretrained ViTPose-B model achieves an improvement in AP of 33.3 % on our validation set for 2D HPE after finetuning on our training set. A similarly finetuned HybrIK-Transformer model gains 53.7 mm reduction in PA-MPJPE for 3D HPE on the validation set.
- Abstract(参考訳): 魚眼カメラを用いたトップビューでのヒューマンポーズ推定(HPE)は、有望で革新的なアプリケーションドメインを示す。
しかし、この視点を捉えたデータセットの可用性は非常に限られており、特に高品質な2Dおよび3Dキーポイントアノテーションがある。
このギャップに対処するため、我々はNeural Radiance Fields(NeRF)の技術を活用し、既存の2Dおよび3Dデータセットから人間のポーズデータセットを生成する包括的なパイプラインを構築します。
このパイプラインを通じて,魚眼カメラ用の新しいデータセットNToP570K(NeRFを利用した570万枚以上の画像付きトップビューヒューマンポースデータセット)を作成し,そのニューラルネットワークを2次元および3次元のトップビュー人間のポーズ推定のために拡張する効果を広範囲に評価する。
事前トレーニングした ViTPose-B モデルでは,トレーニングセットを微調整した後の2次元 HPE の検証セットにおいて,AP が 33.3 % 向上した。
同様に微調整されたHybrIK-Transformerモデルは、検証セット上の3D HPEに対してPA-MPJPEを53.7mm削減する。
関連論文リスト
- CameraHMR: Aligning People with Perspective [54.05758012879385]
モノクロ画像からの正確な3次元ポーズと形状推定の課題に対処する。
既存のトレーニングデータセットには、擬似基底真理(pGT)を持つ実画像が含まれている。
pGTの精度を向上させる2つの貢献をしている。
論文 参考訳(メタデータ) (2024-11-12T19:12:12Z) - FisheyeDepth: A Real Scale Self-Supervised Depth Estimation Model for Fisheye Camera [8.502741852406904]
魚眼カメラに適した自己監督深度推定モデルである魚眼深度について述べる。
魚眼カメラモデルを訓練中の投射と再投射の段階に組み込んで画像歪みの処理を行う。
また、連続するフレーム間の幾何学的投影に実際のポーズ情報を組み込んで、従来のポーズネットワークで推定されたポーズを置き換える。
論文 参考訳(メタデータ) (2024-09-23T14:31:42Z) - Implicit-Zoo: A Large-Scale Dataset of Neural Implicit Functions for 2D Images and 3D Scenes [65.22070581594426]
Implicit-Zoo"は、この分野の研究と開発を容易にするために、数千のGPUトレーニング日を必要とする大規模なデータセットである。
1)トランスモデルのトークン位置を学習すること、(2)NeRFモデルに関して直接3Dカメラが2D画像のポーズを取ること、である。
これにより、画像分類、セマンティックセグメンテーション、および3次元ポーズ回帰の3つのタスクすべてのパフォーマンスが向上し、研究のための新たな道が開けることになる。
論文 参考訳(メタデータ) (2024-06-25T10:20:44Z) - Egocentric Whole-Body Motion Capture with FisheyeViT and Diffusion-Based
Motion Refinement [65.08165593201437]
本研究では,人体と手の動きを同時に推定する単一魚眼カメラを用いて,自我中心型全体モーションキャプチャーを探索する。
この課題は、高品質なデータセットの欠如、魚眼カメラの歪み、人間の身体の自己閉塞など、重大な課題を提起する。
そこで本研究では,魚眼画像の特徴を3次元人体ポーズ予測のための3次元熱マップ表現に変換した魚眼画像の特徴を抽出する手法を提案する。
論文 参考訳(メタデータ) (2023-11-28T07:13:47Z) - Two Views Are Better than One: Monocular 3D Pose Estimation with Multiview Consistency [0.493599216374976]
本稿では,2次元の教師のみによるトレーニングデータの追加を可能にするために,新たな損失関数であるマルチビュー整合性を提案する。
実験の結果,2つの視点を90度にオフセットすれば良好な性能が得られることがわかった。
本研究は3次元ポーズ推定におけるドメイン適応の新たな可能性を導入し,特定のアプリケーション向けにモデルをカスタマイズするための実用的で費用対効果の高いソリューションを提供する。
論文 参考訳(メタデータ) (2023-11-21T08:21:55Z) - CameraPose: Weakly-Supervised Monocular 3D Human Pose Estimation by
Leveraging In-the-wild 2D Annotations [25.05308239278207]
一つの画像から3次元のポーズ推定を行うための弱教師付きフレームワークであるCameraPoseを提案する。
カメラパラメータブランチを追加することで、Wildの2Dアノテーションをパイプラインに投入して、トレーニングの多様性を高めることができます。
また、2次元ポーズ推定器によって抽出されたノイズの多い2Dキーポイントの品質をさらに向上させるため、信頼誘導損失を有する改良型ネットワークモジュールも導入する。
論文 参考訳(メタデータ) (2023-01-08T05:07:41Z) - UnrealEgo: A New Dataset for Robust Egocentric 3D Human Motion Capture [70.59984501516084]
UnrealEgoは、エゴセントリックな3Dポーズ推定のための、新しい大規模博物学データセットである。
これは、2台の魚眼カメラを備えた高度な眼鏡のコンセプトに基づいており、制約のない環境で使用することができる。
本稿では,ステレオ入力のための2次元キーポイント推定モジュールを考案し,人間のポーズ推定を改善するための簡易かつ効果的なベンチマーク手法を提案する。
論文 参考訳(メタデータ) (2022-08-02T17:59:54Z) - AdaptPose: Cross-Dataset Adaptation for 3D Human Pose Estimation by
Learnable Motion Generation [24.009674750548303]
トレーニング済みの3Dポーズ推定器を新しいデータセットでテストすると、大きなパフォーマンス低下が発生する。
本稿では、ソースデータセットから合成された3次元人間の動きを生成するエンドツーエンドフレームワークであるAdaptPoseを提案する。
提案手法は, 部分的な3Dアノテーションを用いた半教師あり学習法を16%, クロスデータセット評価において14%, 従来の半教師あり学習法よりも16%優れていた。
論文 参考訳(メタデータ) (2021-12-22T00:27:52Z) - Towards Generalization of 3D Human Pose Estimation In The Wild [73.19542580408971]
3DBodyTex.Poseは、3Dの人間のポーズ推定のタスクに対処するデータセットである。
3DBodyTex.Poseは、さまざまな衣服やポーズで405種類の実際の被写体を含む高品質でリッチなデータを提供する。
論文 参考訳(メタデータ) (2020-04-21T13:31:58Z) - Exemplar Fine-Tuning for 3D Human Model Fitting Towards In-the-Wild 3D
Human Pose Estimation [107.07047303858664]
3次元の地平線アノテーションを持つ大規模な人的データセットは、野生では入手が困難である。
既存の2Dデータセットを高品質な3Dポーズマッチングで拡張することで、この問題に対処する。
結果として得られるアノテーションは、3Dのプロシージャネットワークをスクラッチからトレーニングするのに十分である。
論文 参考訳(メタデータ) (2020-04-07T20:21:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。