Efficiently Computable Safety Bounds for Gaussian Processes in Active Learning
- URL: http://arxiv.org/abs/2402.18260v2
- Date: Mon, 15 Apr 2024 15:40:06 GMT
- Title: Efficiently Computable Safety Bounds for Gaussian Processes in Active Learning
- Authors: Jörn Tebbe, Christoph Zimmer, Ansgar Steland, Markus Lange-Hegermann, Fabian Mies,
- Abstract summary: In many technical applications the design space is explored via continuous trajectories, along which the safety needs to be assessed.
This is particularly challenging for strict safety requirements in GP methods, as it employs computationally expensive Monte-Carlo sampling of high quantiles.
We address these challenges by providing provable safety bounds based on the adaptively sampled median of the supremum of the posterior GP.
- Score: 6.217857116096573
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Active learning of physical systems must commonly respect practical safety constraints, which restricts the exploration of the design space. Gaussian Processes (GPs) and their calibrated uncertainty estimations are widely used for this purpose. In many technical applications the design space is explored via continuous trajectories, along which the safety needs to be assessed. This is particularly challenging for strict safety requirements in GP methods, as it employs computationally expensive Monte-Carlo sampling of high quantiles. We address these challenges by providing provable safety bounds based on the adaptively sampled median of the supremum of the posterior GP. Our method significantly reduces the number of samples required for estimating high safety probabilities, resulting in faster evaluation without sacrificing accuracy and exploration speed. The effectiveness of our safe active learning approach is demonstrated through extensive simulations and validated using a real-world engine example.
Related papers
- Safely Learning Controlled Stochastic Dynamics [61.82896036131116]
We introduce a method that ensures safe exploration and efficient estimation of system dynamics.<n>After training, the learned model enables predictions of the system's dynamics and permits safety verification of any given control.<n>We provide theoretical guarantees for safety and derive adaptive learning rates that improve with increasing Sobolev regularity of the true dynamics.
arXiv Detail & Related papers (2025-06-03T11:17:07Z) - Amortized Safe Active Learning for Real-Time Data Acquisition: Pretrained Neural Policies from Simulated Nonparametric Functions [23.406516455945653]
We propose an amortized safe AL framework that replaces expensive online computations with a pretrained neural policy.<n>Our framework is modular and can be adapted to unconstrained, time-sensitive AL tasks by omitting the safety requirement.
arXiv Detail & Related papers (2025-01-26T09:05:52Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
This paper revisits prior work in this scope from the perspective of state-wise safe RL.
We propose Unrolling Safety Layer (USL), a joint method that combines safety optimization and safety projection.
To facilitate further research in this area, we reproduce related algorithms in a unified pipeline and incorporate them into SafeRL-Kit.
arXiv Detail & Related papers (2022-12-12T06:30:17Z) - Enforcing Hard Constraints with Soft Barriers: Safe Reinforcement
Learning in Unknown Stochastic Environments [84.3830478851369]
We propose a safe reinforcement learning approach that can jointly learn the environment and optimize the control policy.
Our approach can effectively enforce hard safety constraints and significantly outperform CMDP-based baseline methods in system safe rate measured via simulations.
arXiv Detail & Related papers (2022-09-29T20:49:25Z) - Log Barriers for Safe Black-box Optimization with Application to Safe
Reinforcement Learning [72.97229770329214]
We introduce a general approach for seeking high dimensional non-linear optimization problems in which maintaining safety during learning is crucial.
Our approach called LBSGD is based on applying a logarithmic barrier approximation with a carefully chosen step size.
We demonstrate the effectiveness of our approach on minimizing violation in policy tasks in safe reinforcement learning.
arXiv Detail & Related papers (2022-07-21T11:14:47Z) - Efficient falsification approach for autonomous vehicle validation using
a parameter optimisation technique based on reinforcement learning [6.198523595657983]
The widescale deployment of Autonomous Vehicles (AV) appears to be imminent despite many safety challenges that are yet to be resolved.
The uncertainties in the behaviour of the traffic participants and the dynamic world cause reactions in advanced autonomous systems.
This paper presents an efficient falsification method to evaluate the System Under Test.
arXiv Detail & Related papers (2020-11-16T02:56:13Z) - Evaluating the Safety of Deep Reinforcement Learning Models using
Semi-Formal Verification [81.32981236437395]
We present a semi-formal verification approach for decision-making tasks based on interval analysis.
Our method obtains comparable results over standard benchmarks with respect to formal verifiers.
Our approach allows to efficiently evaluate safety properties for decision-making models in practical applications.
arXiv Detail & Related papers (2020-10-19T11:18:06Z) - Provably Safe PAC-MDP Exploration Using Analogies [87.41775218021044]
Key challenge in applying reinforcement learning to safety-critical domains is understanding how to balance exploration and safety.
We propose Analogous Safe-state Exploration (ASE), an algorithm for provably safe exploration in MDPs with unknown, dynamics.
Our method exploits analogies between state-action pairs to safely learn a near-optimal policy in a PAC-MDP sense.
arXiv Detail & Related papers (2020-07-07T15:50:50Z) - Probabilistic Guarantees for Safe Deep Reinforcement Learning [6.85316573653194]
Deep reinforcement learning has been successfully applied to many control tasks, but the application of such agents in safety-critical scenarios has been limited due to safety concerns.
We propose MOSAIC, an algorithm for measuring the safety of deep reinforcement learning agents in settings.
arXiv Detail & Related papers (2020-05-14T15:42:19Z) - Chance-Constrained Trajectory Optimization for Safe Exploration and
Learning of Nonlinear Systems [81.7983463275447]
Learning-based control algorithms require data collection with abundant supervision for training.
We present a new approach for optimal motion planning with safe exploration that integrates chance-constrained optimal control with dynamics learning and feedback control.
arXiv Detail & Related papers (2020-05-09T05:57:43Z) - Efficient statistical validation with edge cases to evaluate Highly
Automated Vehicles [6.198523595657983]
The widescale deployment of Autonomous Vehicles seems to be imminent despite many safety challenges that are yet to be resolved.
Existing standards focus on deterministic processes where the validation requires only a set of test cases that cover the requirements.
This paper presents a new approach to compute the statistical characteristics of a system's behaviour by biasing automatically generated test cases towards the worst case scenarios.
arXiv Detail & Related papers (2020-03-04T04:35:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.