論文の概要: Living-off-The-Land Reverse-Shell Detection by Informed Data
Augmentation
- arxiv url: http://arxiv.org/abs/2402.18329v1
- Date: Wed, 28 Feb 2024 13:49:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-29 14:57:15.613986
- Title: Living-off-The-Land Reverse-Shell Detection by Informed Data
Augmentation
- Title(参考訳): Informed Data Augmentation による逆シェルのリビングオフ検出
- Authors: Dmitrijs Trizna, Luca Demetrio, Battista Biggio, Fabio Roli
- Abstract要約: リビング・オブ・ザ・ランド(LOTL)の攻撃手法は、正当なアプリケーションによって実行されるコマンドの連鎖を通じて悪意ある行為を犯すことに依存している。
LOTL技術は、共通の正当な活動によって生成されたイベントストリームの中によく隠されている。
正規ログ内でのLOTL悪意のある活動の促進と多様化を目的とした拡張フレームワークを提案する。
- 参考スコア(独自算出の注目度): 16.06998078829495
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The living-off-the-land (LOTL) offensive methodologies rely on the
perpetration of malicious actions through chains of commands executed by
legitimate applications, identifiable exclusively by analysis of system logs.
LOTL techniques are well hidden inside the stream of events generated by common
legitimate activities, moreover threat actors often camouflage activity through
obfuscation, making them particularly difficult to detect without incurring in
plenty of false alarms, even using machine learning. To improve the performance
of models in such an harsh environment, we propose an augmentation framework to
enhance and diversify the presence of LOTL malicious activity inside legitimate
logs. Guided by threat intelligence, we generate a dataset by injecting attack
templates known to be employed in the wild, further enriched by malleable
patterns of legitimate activities to replicate the behavior of evasive threat
actors. We conduct an extensive ablation study to understand which models
better handle our augmented dataset, also manipulated to mimic the presence of
model-agnostic evasion and poisoning attacks. Our results suggest that
augmentation is needed to maintain high-predictive capabilities, robustness to
attack is achieved through specific hardening techniques like adversarial
training, and it is possible to deploy near-real-time models with almost-zero
false alarms.
- Abstract(参考訳): リビング・オブ・ザ・ランド(LOTL)の攻撃的手法は、正統なアプリケーションによって実行されるコマンドの連鎖を通じて悪意ある行為を犯すことに依存しており、システムログの分析によってのみ特定できる。
LOTL技術は、一般的な正当な活動によって生成された事象のストリームの中によく隠されており、さらに、脅威アクターは難読化によってカモフラージュ活動を行うことが多い。
このような厳しい環境下でのモデルの性能向上のために,正規ログ内のLOTL悪意のある活動の強化と多様化を目的とした拡張フレームワークを提案する。
脅威インテリジェンスによってガイドされた我々は、野生で使用されることが知られている攻撃テンプレートを注入することでデータセットを生成し、さらに、回避的脅威アクターの振る舞いを再現するために、正当な活動の持続可能なパターンによって強化する。
我々は、拡張データセットをよりうまく扱うモデルを理解するために広範なアブレーション研究を行い、モデル非依存の回避と毒殺攻撃の存在を模倣するように操作しました。
その結果,高い予測能力を維持するためには拡張が必要であること,敵意トレーニングのような特定の強化技術によって攻撃に対する堅牢性が得られ,ほぼゼロの偽アラームによるリアルタイムに近いモデルのデプロイが可能であること,などが示唆された。
関連論文リスト
- LTRDetector: Exploring Long-Term Relationship for Advanced Persistent Threats Detection [20.360010908574303]
Advanced Persistent Threat (APT) は, 持続時間, 発生頻度, 適応的隠蔽技術により, 検出が困難である。
既存のアプローチは主に、永続的な攻撃ライフサイクルを通じて形成された複雑な関係を無視して、攻撃行動の観測可能な特性に重点を置いている。
LTRDetectorと呼ばれる革新的なAPT検出フレームワークを提案し、エンド・ツー・エンドの全体的操作を実装した。
論文 参考訳(メタデータ) (2024-04-04T02:30:51Z) - FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning [98.43475653490219]
フェデレート・ラーニング(Federated Learning, FL)は、毒素による攻撃を受けやすい。
FreqFedは、モデルの更新を周波数領域に変換する新しいアグリゲーションメカニズムである。
FreqFedは, 凝集モデルの有用性に悪影響を及ぼすことなく, 毒性攻撃を効果的に軽減できることを実証した。
論文 参考訳(メタデータ) (2023-12-07T16:56:24Z) - Backdoor Activation Attack: Attack Large Language Models using
Activation Steering for Safety-Alignment [36.91218391728405]
本稿では,Large Language Modelsの安全性アライメントの脆弱性について検討する。
LLMの既存の攻撃方法は、有毒な訓練データや悪意のあるプロンプトの注入に依存している。
最適化を必要とせず, ステアリングベクターによるモデル動作の修正に成功した最近の成功に触発されて, リピートLLMにおけるその有効性に着想を得た。
実験の結果,アクティベーションアタックは極めて効果的であり,攻撃効率のオーバーヘッドはほとんどあるいは全く生じないことが判明した。
論文 参考訳(メタデータ) (2023-11-15T23:07:40Z) - Poisoning Network Flow Classifiers [10.055241826257083]
本稿では,ネットワークトラフィックフロー分類器に対する毒性攻撃,特にバックドア攻撃に焦点を当てた。
学習データのみを改ざんすることを相手の能力に制約するクリーンラベル中毒の難易度シナリオについて検討した。
本稿では, モデル解釈可能性を利用したトリガー製作戦略について述べる。
論文 参考訳(メタデータ) (2023-06-02T16:24:15Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
トレーニングデータに制限がある現実的なシナリオでは、データ内の多くの予測信号は、データ取得のバイアスからより多く得る。
我々は,相互情報制約の下で,より広い範囲の摂動をカバーできる敵の脅威モデルを考える。
そこで本研究では,その目的を実現するためのオートエンコーダベーストレーニングと,提案したハイブリッド識別世代学習を促進するための実用的なエンコーダ設計を提案する。
論文 参考訳(メタデータ) (2023-03-24T16:03:21Z) - Data Forensics in Diffusion Models: A Systematic Analysis of Membership
Privacy [62.16582309504159]
本研究では,拡散モデルに対するメンバシップ推論攻撃の系統的解析を開発し,各攻撃シナリオに適した新しい攻撃手法を提案する。
提案手法は容易に入手可能な量を利用して,現実的なシナリオにおいてほぼ完全な攻撃性能 (>0.9 AUCROC) を達成することができる。
論文 参考訳(メタデータ) (2023-02-15T17:37:49Z) - CausalAgents: A Robustness Benchmark for Motion Forecasting using Causal
Relationships [8.679073301435265]
既存のデータに摂動を適用することにより、モデルロバスト性の評価と改善のための新しいベンチマークを構築する。
我々はこれらのラベルを使用して、現場から非因果的エージェントを削除することでデータを摂動する。
非因果摂動下では, minADE の相対的な変化は, 原型と比較して25$-$38%である。
論文 参考訳(メタデータ) (2022-07-07T21:28:23Z) - Zero Day Threat Detection Using Graph and Flow Based Security Telemetry [3.3029515721630855]
Zero Day Threats (ZDT) は、悪意あるアクターが情報技術(IT)ネットワークやインフラを攻撃・利用するための新しい手法である。
本稿では,ゼロデイ脅威検出に対するディープラーニングに基づくアプローチを導入し,リアルタイムに脅威を一般化し,スケールし,効果的に識別する。
論文 参考訳(メタデータ) (2022-05-04T19:30:48Z) - Policy Smoothing for Provably Robust Reinforcement Learning [109.90239627115336]
入力のノルム有界対向摂動に対する強化学習の証明可能な堅牢性について検討する。
我々は、スムーズなポリシーによって得られる全報酬が、入力の摂動のノルムバウンドな逆数の下で一定の閾値以下に収まらないことを保証した証明書を生成する。
論文 参考訳(メタデータ) (2021-06-21T21:42:08Z) - Graph Backdoor [53.70971502299977]
GTAはグラフニューラルネットワーク(GNN)に対する最初のバックドア攻撃である。
GTAは、トポロジカル構造と記述的特徴の両方を含む特定の部分グラフとしてトリガーを定義する。
トランスダクティブ(ノード分類など)とインダクティブ(グラフ分類など)の両方のタスクに対してインスタンス化することができる。
論文 参考訳(メタデータ) (2020-06-21T19:45:30Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
人工知能(AI)の最近の進歩は、サイバーセキュリティのための行動分析(UEBA)に新たな能力をもたらした。
本稿では、検出プロセスを改善し、人間の専門知識を効果的に活用することにより、この攻撃を効果的に軽減するソリューションを提案する。
論文 参考訳(メタデータ) (2020-01-13T13:54:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。