論文の概要: Living-off-The-Land Reverse-Shell Detection by Informed Data
Augmentation
- arxiv url: http://arxiv.org/abs/2402.18329v1
- Date: Wed, 28 Feb 2024 13:49:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-29 14:57:15.613986
- Title: Living-off-The-Land Reverse-Shell Detection by Informed Data
Augmentation
- Title(参考訳): Informed Data Augmentation による逆シェルのリビングオフ検出
- Authors: Dmitrijs Trizna, Luca Demetrio, Battista Biggio, Fabio Roli
- Abstract要約: リビング・オブ・ザ・ランド(LOTL)の攻撃手法は、正当なアプリケーションによって実行されるコマンドの連鎖を通じて悪意ある行為を犯すことに依存している。
LOTL技術は、共通の正当な活動によって生成されたイベントストリームの中によく隠されている。
正規ログ内でのLOTL悪意のある活動の促進と多様化を目的とした拡張フレームワークを提案する。
- 参考スコア(独自算出の注目度): 16.06998078829495
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The living-off-the-land (LOTL) offensive methodologies rely on the
perpetration of malicious actions through chains of commands executed by
legitimate applications, identifiable exclusively by analysis of system logs.
LOTL techniques are well hidden inside the stream of events generated by common
legitimate activities, moreover threat actors often camouflage activity through
obfuscation, making them particularly difficult to detect without incurring in
plenty of false alarms, even using machine learning. To improve the performance
of models in such an harsh environment, we propose an augmentation framework to
enhance and diversify the presence of LOTL malicious activity inside legitimate
logs. Guided by threat intelligence, we generate a dataset by injecting attack
templates known to be employed in the wild, further enriched by malleable
patterns of legitimate activities to replicate the behavior of evasive threat
actors. We conduct an extensive ablation study to understand which models
better handle our augmented dataset, also manipulated to mimic the presence of
model-agnostic evasion and poisoning attacks. Our results suggest that
augmentation is needed to maintain high-predictive capabilities, robustness to
attack is achieved through specific hardening techniques like adversarial
training, and it is possible to deploy near-real-time models with almost-zero
false alarms.
- Abstract(参考訳): リビング・オブ・ザ・ランド(LOTL)の攻撃的手法は、正統なアプリケーションによって実行されるコマンドの連鎖を通じて悪意ある行為を犯すことに依存しており、システムログの分析によってのみ特定できる。
LOTL技術は、一般的な正当な活動によって生成された事象のストリームの中によく隠されており、さらに、脅威アクターは難読化によってカモフラージュ活動を行うことが多い。
このような厳しい環境下でのモデルの性能向上のために,正規ログ内のLOTL悪意のある活動の強化と多様化を目的とした拡張フレームワークを提案する。
脅威インテリジェンスによってガイドされた我々は、野生で使用されることが知られている攻撃テンプレートを注入することでデータセットを生成し、さらに、回避的脅威アクターの振る舞いを再現するために、正当な活動の持続可能なパターンによって強化する。
我々は、拡張データセットをよりうまく扱うモデルを理解するために広範なアブレーション研究を行い、モデル非依存の回避と毒殺攻撃の存在を模倣するように操作しました。
その結果,高い予測能力を維持するためには拡張が必要であること,敵意トレーニングのような特定の強化技術によって攻撃に対する堅牢性が得られ,ほぼゼロの偽アラームによるリアルタイムに近いモデルのデプロイが可能であること,などが示唆された。
関連論文リスト
- Efficient Adversarial Training in LLMs with Continuous Attacks [99.5882845458567]
大規模言語モデル(LLM)は、安全ガードレールをバイパスできる敵攻撃に対して脆弱である。
本稿では,2つの損失からなる高速対向訓練アルゴリズム(C-AdvUL)を提案する。
C-AdvIPOは、対向的に堅牢なアライメントのためのユーティリティデータを必要としない、対向型のIPOである。
論文 参考訳(メタデータ) (2024-05-24T14:20:09Z) - Mellivora Capensis: A Backdoor-Free Training Framework on the Poisoned Dataset without Auxiliary Data [29.842087372804905]
本稿では,現実シナリオにおけるバックドア攻撃対策の課題について述べる。
本稿では,モデルトレーナーが有毒なデータセット上でクリーンなモデルをトレーニングできるようにする,堅牢でクリーンなデータのないバックドア防御フレームワークであるMellivora Capensis(textttMeCa)を提案する。
論文 参考訳(メタデータ) (2024-05-21T12:20:19Z) - Fed-Credit: Robust Federated Learning with Credibility Management [18.349127735378048]
Federated Learning(FL)は、分散デバイスやデータソースのモデルトレーニングを可能にする、新興の機械学習アプローチである。
我々は、Fed-Creditと呼ばれる信頼性管理手法に基づく堅牢なFLアプローチを提案する。
その結果、比較的低い計算複雑性を維持しながら、敵攻撃に対する精度とレジリエンスが向上した。
論文 参考訳(メタデータ) (2024-05-20T03:35:13Z) - Advancing DDoS Attack Detection: A Synergistic Approach Using Deep
Residual Neural Networks and Synthetic Oversampling [2.988269372716689]
本稿では,Deep Residual Neural Networks(ResNets)の機能を活用したDDoS攻撃検出の強化手法を提案する。
我々は、良性および悪意のあるデータポイントの表現のバランスをとり、モデルが攻撃を示す複雑なパターンをよりよく識別できるようにする。
実世界のデータセットを用いた実験結果から,従来の手法よりもはるかに優れた99.98%の精度が得られた。
論文 参考訳(メタデータ) (2024-01-06T03:03:52Z) - Client-side Gradient Inversion Against Federated Learning from Poisoning [59.74484221875662]
フェデレートラーニング(FL)により、分散参加者は、データを中央サーバに直接共有することなく、グローバルモデルをトレーニングできる。
近年の研究では、FLは元のトレーニングサンプルの再構築を目的とした勾配反転攻撃(GIA)に弱いことが判明している。
本稿では,クライアント側から起動可能な新たな攻撃手法であるクライアント側中毒性グレーディエント・インバージョン(CGI)を提案する。
論文 参考訳(メタデータ) (2023-09-14T03:48:27Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning(FL)は、分散機械学習モデルのトレーニング、データのプライバシの保護、通信コストの低減、多様化したデータソースによるモデルパフォーマンスの向上を支援する。
FLは、中毒攻撃、標的外のパフォーマンス劣化とターゲットのバックドア攻撃の両方でモデルの整合性を損なうような脆弱性に直面している。
我々は、複数の目的に同時に適応できる、強い適応的敵の概念を新たに定義する。
MESASは、実際のデータシナリオで有効であり、平均オーバーヘッドは24.37秒である。
論文 参考訳(メタデータ) (2023-06-06T11:44:42Z) - DODEM: DOuble DEfense Mechanism Against Adversarial Attacks Towards
Secure Industrial Internet of Things Analytics [8.697883716452385]
I-IoT環境における敵攻撃の検出と軽減のための二重防御機構を提案する。
まず、新規性検出アルゴリズムを用いて、サンプルに対して逆攻撃があるかどうかを検知する。
攻撃があった場合、敵の再訓練はより堅牢なモデルを提供する一方、通常のサンプルに対して標準的な訓練を適用する。
論文 参考訳(メタデータ) (2023-01-23T22:10:40Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
我々は,クライアントの強固化がグローバルモデル(および悪意のあるクライアント)に与える影響について検討する。
本稿では, 逆エンジニアリングによる防御手法を提案するとともに, 堅牢性を保証して, 改良を実現できることを示す。
競合する8つのSOTA防御法について, 単発および連続のFLバックドア攻撃に対して, 提案手法の実証的優位性を示した。
論文 参考訳(メタデータ) (2022-10-23T22:24:03Z) - Interpolated Joint Space Adversarial Training for Robust and
Generalizable Defenses [82.3052187788609]
敵の訓練(AT)は、敵の攻撃に対する最も信頼できる防御の1つと考えられている。
近年の研究では、新たな脅威モデルの下での対向サンプルによる一般化の改善が示されている。
我々は、JSTM(Joint Space Threat Model)と呼ばれる新しい脅威モデルを提案する。
JSTMでは,新たな敵攻撃・防衛手法が開発されている。
論文 参考訳(メタデータ) (2021-12-12T21:08:14Z) - How Robust are Randomized Smoothing based Defenses to Data Poisoning? [66.80663779176979]
我々は、トレーニングデータの品質の重要性を強調する堅牢な機械学習モデルに対して、これまで認識されていなかった脅威を提示します。
本稿では,二段階最適化に基づく新たなデータ中毒攻撃法を提案し,ロバストな分類器のロバスト性を保証する。
我々の攻撃は、被害者が最先端のロバストな訓練方法を用いて、ゼロからモデルを訓練しても効果的である。
論文 参考訳(メタデータ) (2020-12-02T15:30:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。