論文の概要: Robust Federated Learning Against Poisoning Attacks: A GAN-Based Defense Framework
- arxiv url: http://arxiv.org/abs/2503.20884v1
- Date: Wed, 26 Mar 2025 18:00:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-28 12:53:35.605650
- Title: Robust Federated Learning Against Poisoning Attacks: A GAN-Based Defense Framework
- Title(参考訳): 犯罪攻撃に対するロバストなフェデレーション学習: GANベースの防衛フレームワーク
- Authors: Usama Zafar, André Teixeira, Salman Toor,
- Abstract要約: フェデレートラーニング(FL)は、生データを共有せずに、分散デバイス間で協調的なモデルトレーニングを可能にする。
本稿では,クライアントの更新を認証するために,CGAN(Conditional Generative Adversarial Network)を利用してサーバで合成データを生成する,プライバシ保護型防衛フレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.6554326244334868
- License:
- Abstract: Federated Learning (FL) enables collaborative model training across decentralized devices without sharing raw data, but it remains vulnerable to poisoning attacks that compromise model integrity. Existing defenses often rely on external datasets or predefined heuristics (e.g. number of malicious clients), limiting their effectiveness and scalability. To address these limitations, we propose a privacy-preserving defense framework that leverages a Conditional Generative Adversarial Network (cGAN) to generate synthetic data at the server for authenticating client updates, eliminating the need for external datasets. Our framework is scalable, adaptive, and seamlessly integrates into FL workflows. Extensive experiments on benchmark datasets demonstrate its robust performance against a variety of poisoning attacks, achieving high True Positive Rate (TPR) and True Negative Rate (TNR) of malicious and benign clients, respectively, while maintaining model accuracy. The proposed framework offers a practical and effective solution for securing federated learning systems.
- Abstract(参考訳): フェデレートラーニング(FL)は、生データを共有せずに分散化されたデバイス間で協調的なモデルトレーニングを可能にするが、モデルの整合性を損なう有害な攻撃には弱いままである。
既存の防御は、しばしば外部データセットや定義されたヒューリスティック(悪意のあるクライアントの数など)に依存し、その有効性とスケーラビリティを制限する。
このような制約に対処するため,クライアントの更新を認証し,外部データセットの必要性をなくすために,CGAN(Conditional Generative Adversarial Network)を活用してサーバで合成データを生成する,プライバシ保護型防衛フレームワークを提案する。
私たちのフレームワークはスケーラブルで適応的で、シームレスにFLワークフローに統合されます。
ベンチマークデータセットの大規模な実験では、モデル精度を維持しつつ、悪意のあるクライアントのTPR(True Positive Rate)とTrue Negative Rate(True Negative Rate)をそれぞれ達成し、さまざまな毒殺攻撃に対する堅牢なパフォーマンスを示している。
提案フレームワークは,フェデレート学習システムの安全性を確保するための,実用的で効果的なソリューションを提供する。
関連論文リスト
- Robust Knowledge Distillation in Federated Learning: Counteracting Backdoor Attacks [12.227509826319267]
フェデレートラーニング(FL)は、データのプライバシを保持しながら、複数のデバイス間で協調的なモデルトレーニングを可能にする。
悪意のある参加者が世界モデルに侵入できるバックドア攻撃の影響を受けやすい。
本稿では,制約的仮定に頼らずにモデル整合性を高める新しい防御機構であるロバスト知識蒸留(RKD)を提案する。
論文 参考訳(メタデータ) (2025-02-01T22:57:08Z) - Formal Logic-guided Robust Federated Learning against Poisoning Attacks [6.997975378492098]
Federated Learning (FL)は、集中型機械学習(ML)に関連するプライバシー問題に対して、有望な解決策を提供する。
FLは、敵クライアントがトレーニングデータやモデル更新を操作して全体的なモデルパフォーマンスを低下させる、毒殺攻撃など、さまざまなセキュリティ上の脅威に対して脆弱である。
本稿では,時系列タスクにおけるフェデレート学習における中毒攻撃の軽減を目的とした防御機構を提案する。
論文 参考訳(メタデータ) (2024-11-05T16:23:19Z) - Celtibero: Robust Layered Aggregation for Federated Learning [0.0]
Celtiberoは, 対向操作に対する強靭性を高めるため, 層状アグリゲーションを統合した新しい防御機構である。
セルティベロは、標的外および標的標的の毒殺攻撃において、最小攻撃成功率(ASR)を維持しつつ、常に高い主タスク精度(MTA)を達成することを実証した。
論文 参考訳(メタデータ) (2024-08-26T12:54:00Z) - Fed-Credit: Robust Federated Learning with Credibility Management [18.349127735378048]
Federated Learning(FL)は、分散デバイスやデータソースのモデルトレーニングを可能にする、新興の機械学習アプローチである。
我々は、Fed-Creditと呼ばれる信頼性管理手法に基づく堅牢なFLアプローチを提案する。
その結果、比較的低い計算複雑性を維持しながら、敵攻撃に対する精度とレジリエンスが向上した。
論文 参考訳(メタデータ) (2024-05-20T03:35:13Z) - Precision Guided Approach to Mitigate Data Poisoning Attacks in Federated Learning [4.907460152017894]
フェデレートラーニング(Federated Learning, FL)は、参加者が共有機械学習モデルを集合的にトレーニングすることを可能にする、協調学習パラダイムである。
データ中毒攻撃に対する現在のFL防衛戦略は、正確性と堅牢性の間のトレードオフを含む。
本稿では、FLにおけるデータ中毒攻撃を効果的に対処するために、ゾーンベースの退避更新(ZBDU)機構を利用するFedZZを提案する。
論文 参考訳(メタデータ) (2024-04-05T14:37:49Z) - Client-side Gradient Inversion Against Federated Learning from Poisoning [59.74484221875662]
フェデレートラーニング(FL)により、分散参加者は、データを中央サーバに直接共有することなく、グローバルモデルをトレーニングできる。
近年の研究では、FLは元のトレーニングサンプルの再構築を目的とした勾配反転攻撃(GIA)に弱いことが判明している。
本稿では,クライアント側から起動可能な新たな攻撃手法であるクライアント側中毒性グレーディエント・インバージョン(CGI)を提案する。
論文 参考訳(メタデータ) (2023-09-14T03:48:27Z) - FedDefender: Client-Side Attack-Tolerant Federated Learning [60.576073964874]
フェデレーション学習は、プライバシを損なうことなく、分散化されたデータソースからの学習を可能にする。
悪意のあるクライアントがトレーニングプロセスに干渉する、毒殺攻撃のモデル化には脆弱である。
我々はFedDefenderと呼ばれるクライアントサイドに焦点を当てた新しい防御機構を提案し、クライアントの堅牢なローカルモデルのトレーニングを支援する。
論文 参考訳(メタデータ) (2023-07-18T08:00:41Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning(FL)は、分散機械学習モデルのトレーニング、データのプライバシの保護、通信コストの低減、多様化したデータソースによるモデルパフォーマンスの向上を支援する。
FLは、中毒攻撃、標的外のパフォーマンス劣化とターゲットのバックドア攻撃の両方でモデルの整合性を損なうような脆弱性に直面している。
我々は、複数の目的に同時に適応できる、強い適応的敵の概念を新たに定義する。
MESASは、実際のデータシナリオで有効であり、平均オーバーヘッドは24.37秒である。
論文 参考訳(メタデータ) (2023-06-06T11:44:42Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
我々は,クライアントの強固化がグローバルモデル(および悪意のあるクライアント)に与える影響について検討する。
本稿では, 逆エンジニアリングによる防御手法を提案するとともに, 堅牢性を保証して, 改良を実現できることを示す。
競合する8つのSOTA防御法について, 単発および連続のFLバックドア攻撃に対して, 提案手法の実証的優位性を示した。
論文 参考訳(メタデータ) (2022-10-23T22:24:03Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
フェデレートラーニング(Federated Learning)により、多数のクライアントが、プライベートデータを共有することなく、ジョイントモデルをトレーニングできる。
クライアントのアップデートの機密性を保証するため、フェデレートラーニングシステムはセキュアなアグリゲーションを採用している。
悪意のあるクライアントに対する堅牢性を向上させるセキュアなフェデレート学習システムであるRoFLを提案する。
論文 参考訳(メタデータ) (2021-07-07T15:42:49Z) - Federated Learning with Unreliable Clients: Performance Analysis and
Mechanism Design [76.29738151117583]
Federated Learning(FL)は、分散クライアント間で効果的な機械学習モデルをトレーニングするための有望なツールとなっている。
しかし、低品質のモデルは信頼性の低いクライアントによってアグリゲータサーバにアップロードすることができ、劣化やトレーニングの崩壊につながる。
クライアントの信頼できない振る舞いをモデル化し、このようなセキュリティリスクを軽減するための防御メカニズムを提案する。
論文 参考訳(メタデータ) (2021-05-10T08:02:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。