論文の概要: Adversarial Example Soups: Improving Transferability and Stealthiness for Free
- arxiv url: http://arxiv.org/abs/2402.18370v2
- Date: Tue, 30 Apr 2024 14:13:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 19:08:44.481642
- Title: Adversarial Example Soups: Improving Transferability and Stealthiness for Free
- Title(参考訳): 相反する例:自由の伝達性とステルスネスの改善
- Authors: Bo Yang, Hengwei Zhang, Jindong Wang, Yulong Yang, Chenhao Lin, Chao Shen, Zhengyu Zhao,
- Abstract要約: 転送可能性の最大化のための従来のレシピは、最適化パイプラインで得られた全てのものから最適な逆例のみを保持することである。
AES-tune を用いて, 廃棄された逆数例を平均化するための「逆数例スープ」 (AES) を提案する。
AESは10の最先端の転送攻撃とそれらの組み合わせを最大13%増やし、10の多様な(防御的な)ターゲットモデルに対抗します。
- 参考スコア(独自算出の注目度): 17.094999396412216
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transferable adversarial examples cause practical security risks since they can mislead a target model without knowing its internal knowledge. A conventional recipe for maximizing transferability is to keep only the optimal adversarial example from all those obtained in the optimization pipeline. In this paper, for the first time, we question this convention and demonstrate that those discarded, sub-optimal adversarial examples can be reused to boost transferability. Specifically, we propose ``Adversarial Example Soups'' (AES), with AES-tune for averaging discarded adversarial examples in hyperparameter tuning and AES-rand for stability testing. In addition, our AES is inspired by ``model soups'', which averages weights of multiple fine-tuned models for improved accuracy without increasing inference time. Extensive experiments validate the global effectiveness of our AES, boosting 10 state-of-the-art transfer attacks and their combinations by up to 13% against 10 diverse (defensive) target models. We also show the possibility of generalizing AES to other types, e.g., directly averaging multiple in-the-wild adversarial examples that yield comparable success. A promising byproduct of AES is the improved stealthiness of adversarial examples since the perturbation variances are naturally reduced.
- Abstract(参考訳): 転送可能な敵の例は、その内部知識を知らずにターゲットモデルを誤認できるため、現実的なセキュリティリスクを引き起こす。
転送可能性の最大化のための従来のレシピは、最適化パイプラインで得られた全てのものから最適な逆例のみを保持することである。
本稿では,この慣例に初めて疑問を呈し,捨てられた準最適対向例を再利用し,転送可能性を高めることを実証する。
具体的には,AES-tune を用いた高パラメータチューニングにおける破棄された逆数例の平均化と安定性試験のための AES-rand を提案する。
さらに,AESは「モデルスープ」にインスパイアされ,複数の微調整モデルの平均重みを推定時間を増やすことなく精度を向上する。
大規模な実験により、AESのグローバルな効果を検証し、10の最先端のトランスファー攻撃とそれらの組み合わせを最大13%増やし、10の多様な(防御的な)ターゲットモデルと比較した。
また、AESを他のタイプに一般化する可能性を示す。
AESの有望な副産物は、摂動分散が自然に減少するため、敵例のステルス性の改善である。
関連論文リスト
- Boosting the Targeted Transferability of Adversarial Examples via Salient Region & Weighted Feature Drop [2.176586063731861]
敵攻撃に対する一般的なアプローチは、敵の例の転送可能性に依存する。
SWFD(Salient Region & Weighted Feature Drop)をベースとした新しいフレームワークは,敵対的事例のターゲット転送可能性を高める。
論文 参考訳(メタデータ) (2024-11-11T08:23:37Z) - Transferable Adversarial Attacks on SAM and Its Downstream Models [87.23908485521439]
本稿では,セグメント・アプライス・モデル(SAM)から微調整した様々な下流モデルに対する敵攻撃の可能性について検討する。
未知のデータセットを微調整したモデルに対する敵攻撃の有効性を高めるために,ユニバーサルメタ初期化(UMI)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-26T15:04:04Z) - Improving Adversarial Training using Vulnerability-Aware Perturbation
Budget [7.430861908931903]
敵対的訓練(AT)は、敵対的攻撃に対するディープニューラルネットワーク(DNN)の堅牢性を効果的に改善する。
本稿では,AT の逆例に摂動境界を割り当てる簡易で安価な脆弱性認識型再重み付け関数を提案する。
実験の結果,提案手法は様々な攻撃に対してATアルゴリズムの頑健さを真に向上させることがわかった。
論文 参考訳(メタデータ) (2024-03-06T21:50:52Z) - Improving Transferability of Adversarial Examples via Bayesian Attacks [84.90830931076901]
モデル入力にベイズ定式化を組み込むことにより,モデル入力とモデルパラメータの共分散を可能にする新しい拡張を導入する。
提案手法は,トランスファーベース攻撃に対する新たな最先端技術を実現し,ImageNetとCIFAR-10の平均成功率をそれぞれ19.14%,2.08%向上させる。
論文 参考訳(メタデータ) (2023-07-21T03:43:07Z) - Generating Adversarial Examples with Better Transferability via Masking
Unimportant Parameters of Surrogate Model [6.737574282249396]
非重要マスキングパラメータ(MUP)を用いた転送攻撃における敵例の転送可能性の向上を提案する。
MUPのキーとなるアイデアは、事前訓練されたサロゲートモデルを洗練して、転送ベースの攻撃を強化することである。
論文 参考訳(メタデータ) (2023-04-14T03:06:43Z) - Latent Feature Relation Consistency for Adversarial Robustness [80.24334635105829]
深層ニューラルネットワークは、人間の知覚できない敵のノイズを自然の例に付加する敵の例を予測するときに、誤分類が起こる。
textbfLatent textbfFeature textbfRelation textbfConsistency (textbfLFRC)を提案する。
LFRCは、潜在空間における逆例の関係を、自然例と整合性に制約する。
論文 参考訳(メタデータ) (2023-03-29T13:50:01Z) - Making Substitute Models More Bayesian Can Enhance Transferability of
Adversarial Examples [89.85593878754571]
ディープニューラルネットワークにおける敵の例の転送可能性は多くのブラックボックス攻撃の欠如である。
我々は、望ましい転送可能性を達成するためにベイズモデルを攻撃することを提唱する。
我々の手法は近年の最先端を大きなマージンで上回る。
論文 参考訳(メタデータ) (2023-02-10T07:08:13Z) - Regularizing Variational Autoencoder with Diversity and Uncertainty
Awareness [61.827054365139645]
変分オートエンコーダ(VAE)は、償却変分推論に基づいて潜伏変数の後部を近似する。
よりディバースで不確実な潜在空間を学習するための代替モデルDU-VAEを提案する。
論文 参考訳(メタデータ) (2021-10-24T07:58:13Z) - Generalizing Adversarial Examples by AdaBelief Optimizer [6.243028964381449]
本稿では,AdaBelief反復高速勾配符号法を提案し,その逆例を一般化する。
提案手法は,最先端の攻撃手法と比較して,ホワイトボックス設定における敵例を効果的に生成することができる。
転送速度は、最新の攻撃方法よりも7%-21%高いです。
論文 参考訳(メタデータ) (2021-01-25T07:39:16Z) - Adversarial Distributional Training for Robust Deep Learning [53.300984501078126]
逆行訓練(AT)は、逆行例によるトレーニングデータを増やすことにより、モデルロバスト性を改善する最も効果的な手法の一つである。
既存のAT手法の多くは、敵の例を作らせるために特定の攻撃を採用しており、他の目に見えない攻撃に対する信頼性の低い堅牢性につながっている。
本稿では,ロバストモデル学習のための新しいフレームワークであるADTを紹介する。
論文 参考訳(メタデータ) (2020-02-14T12:36:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。