論文の概要: Boosting the Targeted Transferability of Adversarial Examples via Salient Region & Weighted Feature Drop
- arxiv url: http://arxiv.org/abs/2411.06784v1
- Date: Mon, 11 Nov 2024 08:23:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:06:54.975282
- Title: Boosting the Targeted Transferability of Adversarial Examples via Salient Region & Weighted Feature Drop
- Title(参考訳): 有向領域と重み付き特徴量滴による敵例の目標伝達性向上
- Authors: Shanjun Xu, Linghui Li, Kaiguo Yuan, Bingyu Li,
- Abstract要約: 敵攻撃に対する一般的なアプローチは、敵の例の転送可能性に依存する。
SWFD(Salient Region & Weighted Feature Drop)をベースとした新しいフレームワークは,敵対的事例のターゲット転送可能性を高める。
- 参考スコア(独自算出の注目度): 2.176586063731861
- License:
- Abstract: Deep neural networks can be vulnerable to adversarially crafted examples, presenting significant risks to practical applications. A prevalent approach for adversarial attacks relies on the transferability of adversarial examples, which are generated from a substitute model and leveraged to attack unknown black-box models. Despite various proposals aimed at improving transferability, the success of these attacks in targeted black-box scenarios is often hindered by the tendency for adversarial examples to overfit to the surrogate models. In this paper, we introduce a novel framework based on Salient region & Weighted Feature Drop (SWFD) designed to enhance the targeted transferability of adversarial examples. Drawing from the observation that examples with higher transferability exhibit smoother distributions in the deep-layer outputs, we propose the weighted feature drop mechanism to modulate activation values according to weights scaled by norm distribution, effectively addressing the overfitting issue when generating adversarial examples. Additionally, by leveraging salient region within the image to construct auxiliary images, our method enables the adversarial example's features to be transferred to the target category in a model-agnostic manner, thereby enhancing the transferability. Comprehensive experiments confirm that our approach outperforms state-of-the-art methods across diverse configurations. On average, the proposed SWFD raises the attack success rate for normally trained models and robust models by 16.31% and 7.06% respectively.
- Abstract(参考訳): ディープニューラルネットワークは、敵が作り上げた例に対して脆弱であり、実用的なアプリケーションに重大なリスクをもたらす可能性がある。
敵攻撃の一般的なアプローチは、代替モデルから生成され未知のブラックボックスモデルを攻撃するために利用される敵の例の転送可能性に依存する。
転送可能性の向上を目的とした様々な提案にもかかわらず、標的となるブラックボックスシナリオにおけるこれらの攻撃の成功は、サロゲートモデルに過度に適合する敵の例の傾向によって妨げられることが多い。
本稿では,SWFD(Salient Region & Weighted Feature Drop)に基づく新たなフレームワークを提案する。
重み付けされた特徴量ドロップ機構は,高転写率の例ではよりスムーズな分布を示すという観測結果から,標準分布でスケールした重みによる活性化値を変調し,敵の例を生成する際の過度な問題に効果的に対処する。
さらに,画像内の健全な領域を活用して補助画像を構築することにより,モデルに依存しない方法で,敵対するサンプルの特徴を対象カテゴリに移動させることにより,転送可能性を向上させる。
総合的な実験により、我々の手法は様々な構成で最先端の手法より優れていることが確認された。
提案されたSWFDは、通常訓練されたモデルとロバストモデルの攻撃成功率をそれぞれ16.31%、そして7.06%向上させる。
関連論文リスト
- Transferable Adversarial Attacks on SAM and Its Downstream Models [87.23908485521439]
本稿では,セグメント・アプライス・モデル(SAM)から微調整した様々な下流モデルに対する敵攻撃の可能性について検討する。
未知のデータセットを微調整したモデルに対する敵攻撃の有効性を高めるために,ユニバーサルメタ初期化(UMI)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-26T15:04:04Z) - Efficient Generation of Targeted and Transferable Adversarial Examples for Vision-Language Models Via Diffusion Models [17.958154849014576]
大規模視覚言語モデル(VLM)のロバスト性を評価するために、敵対的攻撃を用いることができる。
従来のトランスファーベースの敵攻撃は、高いイテレーション数と複雑なメソッド構造により、高いコストを発生させる。
本稿では, 拡散モデルを用いて, 自然, 制約のない, 対象とする対向的な例を生成するAdvDiffVLMを提案する。
論文 参考訳(メタデータ) (2024-04-16T07:19:52Z) - SA-Attack: Improving Adversarial Transferability of Vision-Language
Pre-training Models via Self-Augmentation [56.622250514119294]
ホワイトボックスの敵攻撃とは対照的に、転送攻撃は現実世界のシナリオをより反映している。
本稿では,SA-Attackと呼ばれる自己拡張型転送攻撃手法を提案する。
論文 参考訳(メタデータ) (2023-12-08T09:08:50Z) - An Adaptive Model Ensemble Adversarial Attack for Boosting Adversarial
Transferability [26.39964737311377]
我々はAdaEAと呼ばれる適応型アンサンブル攻撃を提案し、各モデルからの出力の融合を適応的に制御する。
我々は、様々なデータセットに対する既存のアンサンブル攻撃よりも大幅に改善した。
論文 参考訳(メタデータ) (2023-08-05T15:12:36Z) - Generating Adversarial Examples with Better Transferability via Masking
Unimportant Parameters of Surrogate Model [6.737574282249396]
非重要マスキングパラメータ(MUP)を用いた転送攻撃における敵例の転送可能性の向上を提案する。
MUPのキーとなるアイデアは、事前訓練されたサロゲートモデルを洗練して、転送ベースの攻撃を強化することである。
論文 参考訳(メタデータ) (2023-04-14T03:06:43Z) - Fuzziness-tuned: Improving the Transferability of Adversarial Examples [18.880398046794138]
敵対的な例は、ディープニューラルネットワークにおけるトレーニングモデルの堅牢性を高めるために広く使用されている。
代理モデルに対するトランスファーベース攻撃の攻撃成功率は、低攻撃強度下の犠牲者モデルよりもはるかに高い。
ファジィ領域から効果的に外れるようにファジィ調整法が提案されている。
論文 参考訳(メタデータ) (2023-03-17T16:00:18Z) - Making Substitute Models More Bayesian Can Enhance Transferability of
Adversarial Examples [89.85593878754571]
ディープニューラルネットワークにおける敵の例の転送可能性は多くのブラックボックス攻撃の欠如である。
我々は、望ましい転送可能性を達成するためにベイズモデルを攻撃することを提唱する。
我々の手法は近年の最先端を大きなマージンで上回る。
論文 参考訳(メタデータ) (2023-02-10T07:08:13Z) - Harnessing Perceptual Adversarial Patches for Crowd Counting [92.79051296850405]
群衆のカウントは、物理的な世界の敵の例に弱い。
本稿では,モデル間での知覚的特徴の共有を学習するためのPAP(Perceptual Adrial Patch)生成フレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-16T13:51:39Z) - Boosting Transferability of Targeted Adversarial Examples via
Hierarchical Generative Networks [56.96241557830253]
転送ベースの敵攻撃はブラックボックス設定におけるモデルロバスト性を効果的に評価することができる。
本稿では,異なるクラスを対象にした対角的例を生成する条件生成攻撃モデルを提案する。
提案手法は,既存の手法と比較して,標的となるブラックボックス攻撃の成功率を大幅に向上させる。
論文 参考訳(メタデータ) (2021-07-05T06:17:47Z) - Boosting Black-Box Attack with Partially Transferred Conditional
Adversarial Distribution [83.02632136860976]
深層ニューラルネットワーク(DNN)に対するブラックボックス攻撃の研究
我々は, 代理バイアスに対して頑健な, 対向移動可能性の新たなメカニズムを開発する。
ベンチマークデータセットの実験と実世界のAPIに対する攻撃は、提案手法の優れた攻撃性能を示す。
論文 参考訳(メタデータ) (2020-06-15T16:45:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。