Spatial Coherence Loss: All Objects Matter in Salient and Camouflaged Object Detection
- URL: http://arxiv.org/abs/2402.18698v2
- Date: Tue, 16 Jul 2024 20:23:30 GMT
- Title: Spatial Coherence Loss: All Objects Matter in Salient and Camouflaged Object Detection
- Authors: Ziyun Yang, Kevin Choy, Sina Farsiu,
- Abstract summary: We show that for accurate semantic analysis, the network needs to learn all object-level predictions that appear at any stage of learning.
We propose a novel loss function, Spatial Coherence Loss (SCLoss), that incorporates the mutual response between adjacent pixels into the widely-used single-response loss functions.
- Score: 3.03995893427722
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generic object detection is a category-independent task that relies on accurate modeling of objectness. We show that for accurate semantic analysis, the network needs to learn all object-level predictions that appear at any stage of learning, including the pre-defined ground truth (GT) objects and the ambiguous decoy objects that the network misidentifies as foreground. Yet, most relevant models focused mainly on improving the learning of the GT objects. A few methods that consider decoy objects utilize loss functions that only focus on the single-response, i.e., the loss response of a single ambiguous pixel, and thus do not benefit from the wealth of information that an object-level ambiguity learning design can provide. Inspired by the human visual system, which first discerns the boundaries of ambiguous regions before delving into the semantic meaning, we propose a novel loss function, Spatial Coherence Loss (SCLoss), that incorporates the mutual response between adjacent pixels into the widely-used single-response loss functions. We demonstrate that the proposed SCLoss can gradually learn the ambiguous regions by detecting and emphasizing their boundaries in a self-adaptive manner. Through comprehensive experiments, we demonstrate that replacing popular loss functions with SCLoss can improve the performance of current state-of-the-art (SOTA) salient or camouflaged object detection (SOD or COD) models. We also demonstrate that combining SCLoss with other loss functions can further improve performance and result in SOTA outcomes for different applications.
Related papers
- SurANet: Surrounding-Aware Network for Concealed Object Detection via Highly-Efficient Interactive Contrastive Learning Strategy [55.570183323356964]
We propose a novel Surrounding-Aware Network, namely SurANet, for concealed object detection.
We enhance the semantics of feature maps using differential fusion of surrounding features to highlight concealed objects.
Next, a Surrounding-Aware Contrastive Loss is applied to identify the concealed object via learning surrounding feature maps contrastively.
arXiv Detail & Related papers (2024-10-09T13:02:50Z) - Unraveling the Hessian: A Key to Smooth Convergence in Loss Function Landscapes [0.0]
We theoretically analyze the convergence of the loss landscape in a fully connected neural network and derive upper bounds for the difference in loss function values when adding a new object to the sample.
Our empirical study confirms these results on various datasets, demonstrating the convergence of the loss function surface for image classification tasks.
arXiv Detail & Related papers (2024-09-18T14:04:15Z) - SCLNet: A Scale-Robust Complementary Learning Network for Object Detection in UAV Images [0.0]
This paper introduces a scale-robust complementary learning network (SCLNet) to address the scale challenges.
One implementation is based on our proposed scale-complementary decoder and scale-complementary loss function.
Another implementation is based on our proposed contrastive complement network and contrastive complement loss function.
arXiv Detail & Related papers (2024-09-11T05:39:25Z) - Self-Supervised Video Object Segmentation via Cutout Prediction and
Tagging [117.73967303377381]
We propose a novel self-supervised Video Object (VOS) approach that strives to achieve better object-background discriminability.
Our approach is based on a discriminative learning loss formulation that takes into account both object and background information.
Our proposed approach, CT-VOS, achieves state-of-the-art results on two challenging benchmarks: DAVIS-2017 and Youtube-VOS.
arXiv Detail & Related papers (2022-04-22T17:53:27Z) - High-resolution Iterative Feedback Network for Camouflaged Object
Detection [128.893782016078]
Spotting camouflaged objects that are visually assimilated into the background is tricky for object detection algorithms.
We aim to extract the high-resolution texture details to avoid the detail degradation that causes blurred vision in edges and boundaries.
We introduce a novel HitNet to refine the low-resolution representations by high-resolution features in an iterative feedback manner.
arXiv Detail & Related papers (2022-03-22T11:20:21Z) - Robust Region Feature Synthesizer for Zero-Shot Object Detection [87.79902339984142]
We build a novel zero-shot object detection framework that contains an Intra-class Semantic Diverging component and an Inter-class Structure Preserving component.
It is the first study to carry out zero-shot object detection in remote sensing imagery.
arXiv Detail & Related papers (2022-01-01T03:09:15Z) - Loss Function Discovery for Object Detection via Convergence-Simulation
Driven Search [101.73248560009124]
We propose an effective convergence-simulation driven evolutionary search algorithm, CSE-Autoloss, for speeding up the search progress.
We conduct extensive evaluations of loss function search on popular detectors and validate the good generalization capability of searched losses.
Our experiments show that the best-discovered loss function combinations outperform default combinations by 1.1% and 0.8% in terms of mAP for two-stage and one-stage detectors.
arXiv Detail & Related papers (2021-02-09T08:34:52Z) - Progressive Self-Guided Loss for Salient Object Detection [102.35488902433896]
We present a progressive self-guided loss function to facilitate deep learning-based salient object detection in images.
Our framework takes advantage of adaptively aggregated multi-scale features to locate and detect salient objects effectively.
arXiv Detail & Related papers (2021-01-07T07:33:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.