Particle-conserving quantum circuit ansatz with applications in
variational simulation of bosonic systems
- URL: http://arxiv.org/abs/2402.18768v1
- Date: Thu, 29 Feb 2024 00:21:22 GMT
- Title: Particle-conserving quantum circuit ansatz with applications in
variational simulation of bosonic systems
- Authors: Sina Bahrami, Nicolas Sawaya
- Abstract summary: We introduce the binary encoded multilevel particles circuit ansatz (BEMPA) for use in quantum variational algorithms.
Key insight is to build the circuit blocks by carefully positioning a set of symmetry-preserving 2- and 3-qubit gates.
For a range of model parameters spanning from Mott insulator to superfluid phase, we demonstrate that our proposed circuit ansatz finds the ground state eigenvalues within drastically shorter runtimes.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Constrained problems are frequently encountered in classical and quantum
optimization. Particle conservation, in particular, is commonly imposed when
studying energy spectra of chemical and solid state systems. Though particle
number-constraining techniques have been developed for fermionic (e.g.
molecular electronic structure) Hamiltonians, analogous techniques are lacking
for non-binary and non-fermionic problems, as in the case of bosonic systems or
classical optimization problems over integer variables. Here we introduce the
binary encoded multilevel particles circuit ansatz (BEMPA) -- an ansatz which
preserves particle count by construction -- for use in quantum variational
algorithms. The key insight is to build the circuit blocks by carefully
positioning a set of symmetry-preserving 2- and 3-qubit gates. We numerically
analyze the problem of finding the ground state eigenvalues -- via the
Variational Quantum Eigensolver (VQE) algorithm -- of the Bose-Hubbard
Hamiltonian. For a range of model parameters spanning from Mott insulator to
superfluid phase, we demonstrate that our proposed circuit ansatz finds the
ground state eigenvalues within drastically shorter runtimes compared to
penalty-based strategies methods. Finally, we analyze the potential resource
benefits of changing the qubit encoding at the end of the optimization routine.
Our results attest to the efficacy of BEMPA for simulating bosonic problems for
which particle number is preserved.
Related papers
- Simulating continuous-space systems with quantum-classical wave functions [0.0]
Non-relativistic interacting quantum many-body systems are naturally described in terms of continuous-space Hamiltonians.
Current algorithms require discretization, which usually amounts to choosing a finite basis set, inevitably introducing errors.
We propose an alternative, discretization-free approach that combines classical and quantum resources in a global variational ansatz.
arXiv Detail & Related papers (2024-09-10T10:54:59Z) - A circuit-generated quantum subspace algorithm for the variational quantum eigensolver [0.0]
We propose combining quantum subspace techniques with the variational quantum eigensolver (VQE)
In our approach, the parameterized quantum circuit is divided into a series of smaller subcircuits.
The sequential application of these subcircuits to an initial state generates a set of wavefunctions that we use as a quantum subspace to obtain high-accuracy groundstate energies.
arXiv Detail & Related papers (2024-04-09T18:00:01Z) - Boundary Treatment for Variational Quantum Simulations of Partial Differential Equations on Quantum Computers [1.6318838452579472]
The paper presents a variational quantum algorithm to solve initial-boundary value problems described by partial differential equations.
The approach uses classical/quantum hardware that is well suited for quantum computers of the current noisy intermediate-scale quantum era.
arXiv Detail & Related papers (2024-02-28T18:19:33Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Variational Adiabatic Gauge Transformation on real quantum hardware for
effective low-energy Hamiltonians and accurate diagonalization [68.8204255655161]
We introduce the Variational Adiabatic Gauge Transformation (VAGT)
VAGT is a non-perturbative hybrid quantum algorithm that can use nowadays quantum computers to learn the variational parameters of the unitary circuit.
The accuracy of VAGT is tested trough numerical simulations, as well as simulations on Rigetti and IonQ quantum computers.
arXiv Detail & Related papers (2021-11-16T20:50:08Z) - Using gradient-based algorithms to determine ground state energies on a
quantum computer [0.0]
Variational algorithms are promising candidates to be implemented on near-term quantum computers.
We study how different methods for obtaining the gradient, specifically the finite-difference and the parameter-shift rule, are affected by shot noise and noise of the quantum computer.
arXiv Detail & Related papers (2021-09-17T09:12:43Z) - Bosonic field digitization for quantum computers [62.997667081978825]
We address the representation of lattice bosonic fields in a discretized field amplitude basis.
We develop methods to predict error scaling and present efficient qubit implementation strategies.
arXiv Detail & Related papers (2021-08-24T15:30:04Z) - Variational Quantum Eigensolver for SU($N$) Fermions [0.0]
Variational quantum algorithms aim at harnessing the power of noisy intermediate-scale quantum computers.
We apply the variational quantum eigensolver to study the ground-state properties of $N$-component fermions.
Our approach lays out the basis for a current-based quantum simulator of many-body systems.
arXiv Detail & Related papers (2021-06-29T16:39:30Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.