SNE-RoadSegV2: Advancing Heterogeneous Feature Fusion and Fallibility Awareness for Freespace Detection
- URL: http://arxiv.org/abs/2402.18918v2
- Date: Fri, 29 Mar 2024 08:06:38 GMT
- Title: SNE-RoadSegV2: Advancing Heterogeneous Feature Fusion and Fallibility Awareness for Freespace Detection
- Authors: Yi Feng, Yu Ma, Qijun Chen, Ioannis Pitas, Rui Fan,
- Abstract summary: This paper presents a novel heterogeneous feature fusion block, comprising a holistic attention module, a heterogeneous feature contrast descriptor, and an affinity-weighted feature recalibrator.
It incorporates both inter-scale and intra-scale skip connections into the decoder architecture while eliminating redundant ones, leading to both improved accuracy and computational efficiency.
It introduces two fallibility-aware loss functions that separately focus on semantic-transition and depth-inconsistent regions, collectively contributing to greater supervision during model training.
- Score: 29.348921424716057
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Feature-fusion networks with duplex encoders have proven to be an effective technique to solve the freespace detection problem. However, despite the compelling results achieved by previous research efforts, the exploration of adequate and discriminative heterogeneous feature fusion, as well as the development of fallibility-aware loss functions remains relatively scarce. This paper makes several significant contributions to address these limitations: (1) It presents a novel heterogeneous feature fusion block, comprising a holistic attention module, a heterogeneous feature contrast descriptor, and an affinity-weighted feature recalibrator, enabling a more in-depth exploitation of the inherent characteristics of the extracted features, (2) it incorporates both inter-scale and intra-scale skip connections into the decoder architecture while eliminating redundant ones, leading to both improved accuracy and computational efficiency, and (3) it introduces two fallibility-aware loss functions that separately focus on semantic-transition and depth-inconsistent regions, collectively contributing to greater supervision during model training. Our proposed heterogeneous feature fusion network (SNE-RoadSegV2), which incorporates all these innovative components, demonstrates superior performance in comparison to all other freespace detection algorithms across multiple public datasets. Notably, it ranks the 1st on the official KITTI Road benchmark.
Related papers
- Bridging the Gap Between End-to-End and Two-Step Text Spotting [88.14552991115207]
Bridging Text Spotting is a novel approach that resolves the error accumulation and suboptimal performance issues in two-step methods.
We demonstrate the effectiveness of the proposed method through extensive experiments.
arXiv Detail & Related papers (2024-04-06T13:14:04Z) - Fully Differentiable Correlation-driven 2D/3D Registration for X-ray to CT Image Fusion [3.868072865207522]
Image-based rigid 2D/3D registration is a critical technique for fluoroscopic guided surgical interventions.
We propose a novel fully differentiable correlation-driven network using a dual-branch CNN-transformer encoder.
A correlation-driven loss is proposed for low-frequency feature and high-frequency feature decomposition based on embedded information.
arXiv Detail & Related papers (2024-02-04T14:12:51Z) - Dual Attention U-Net with Feature Infusion: Pushing the Boundaries of
Multiclass Defect Segmentation [1.487252325779766]
The proposed architecture, Dual Attentive U-Net with Feature Infusion (DAU-FI Net), addresses challenges in semantic segmentation.
DAU-FI Net integrates multiscale spatial-channel attention mechanisms and feature injection to enhance precision in object localization.
Comprehensive experiments on a challenging sewer pipe and culvert defect dataset and a benchmark dataset validate DAU-FI Net's capabilities.
arXiv Detail & Related papers (2023-12-21T17:23:49Z) - Feature Completion Transformer for Occluded Person Re-identification [25.159974510754992]
Occluded person re-identification (Re-ID) is a challenging problem due to the destruction of occluders.
We propose a Feature Completion Transformer (FCFormer) to implicitly complement the semantic information of occluded parts in the feature space.
FCFormer achieves superior performance and outperforms the state-of-the-art methods by significant margins on occluded datasets.
arXiv Detail & Related papers (2023-03-03T01:12:57Z) - Task-Oriented Sensing, Computation, and Communication Integration for
Multi-Device Edge AI [108.08079323459822]
This paper studies a new multi-intelligent edge artificial-latency (AI) system, which jointly exploits the AI model split inference and integrated sensing and communication (ISAC)
We measure the inference accuracy by adopting an approximate but tractable metric, namely discriminant gain.
arXiv Detail & Related papers (2022-07-03T06:57:07Z) - The KFIoU Loss for Rotated Object Detection [115.334070064346]
In this paper, we argue that one effective alternative is to devise an approximate loss who can achieve trend-level alignment with SkewIoU loss.
Specifically, we model the objects as Gaussian distribution and adopt Kalman filter to inherently mimic the mechanism of SkewIoU.
The resulting new loss called KFIoU is easier to implement and works better compared with exact SkewIoU.
arXiv Detail & Related papers (2022-01-29T10:54:57Z) - EPNet++: Cascade Bi-directional Fusion for Multi-Modal 3D Object
Detection [56.03081616213012]
We propose EPNet++ for multi-modal 3D object detection by introducing a novel Cascade Bi-directional Fusion(CB-Fusion) module.
The proposed CB-Fusion module boosts the plentiful semantic information of point features with the image features in a cascade bi-directional interaction fusion manner.
The experiment results on the KITTI, JRDB and SUN-RGBD datasets demonstrate the superiority of EPNet++ over the state-of-the-art methods.
arXiv Detail & Related papers (2021-12-21T10:48:34Z) - G$^2$DA: Geometry-Guided Dual-Alignment Learning for RGB-Infrared Person
Re-Identification [3.909938091041451]
RGB-IR person re-identification aims to retrieve person-of-interest between heterogeneous modalities.
This paper presents a Geometry-Guided Dual-Alignment learning framework (G$2$DA) to tackle sample-level modality difference.
arXiv Detail & Related papers (2021-06-15T03:14:31Z) - Unveiling Anomalous Edges and Nominal Connectivity of Attributed
Networks [53.56901624204265]
The present work deals with uncovering anomalous edges in attributed graphs using two distinct formulations with complementary strengths.
The first relies on decomposing the graph data matrix into low rank plus sparse components to improve markedly performance.
The second broadens the scope of the first by performing robust recovery of the unperturbed graph, which enhances the anomaly identification performance.
arXiv Detail & Related papers (2021-04-17T20:00:40Z) - Hierarchical Deep CNN Feature Set-Based Representation Learning for
Robust Cross-Resolution Face Recognition [59.29808528182607]
Cross-resolution face recognition (CRFR) is important in intelligent surveillance and biometric forensics.
Existing shallow learning-based and deep learning-based methods focus on mapping the HR-LR face pairs into a joint feature space.
In this study, we desire to fully exploit the multi-level deep convolutional neural network (CNN) feature set for robust CRFR.
arXiv Detail & Related papers (2021-03-25T14:03:42Z) - AFD-Net: Adaptive Fully-Dual Network for Few-Shot Object Detection [8.39479809973967]
Few-shot object detection (FSOD) aims at learning a detector that can fast adapt to previously unseen objects with scarce examples.
Existing methods solve this problem by performing subtasks of classification and localization utilizing a shared component.
We present that a general few-shot detector should consider the explicit decomposition of two subtasks, as well as leveraging information from both of them to enhance feature representations.
arXiv Detail & Related papers (2020-11-30T10:21:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.