Bridging the Gap Between End-to-End and Two-Step Text Spotting
- URL: http://arxiv.org/abs/2404.04624v1
- Date: Sat, 6 Apr 2024 13:14:04 GMT
- Title: Bridging the Gap Between End-to-End and Two-Step Text Spotting
- Authors: Mingxin Huang, Hongliang Li, Yuliang Liu, Xiang Bai, Lianwen Jin,
- Abstract summary: Bridging Text Spotting is a novel approach that resolves the error accumulation and suboptimal performance issues in two-step methods.
We demonstrate the effectiveness of the proposed method through extensive experiments.
- Score: 88.14552991115207
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modularity plays a crucial role in the development and maintenance of complex systems. While end-to-end text spotting efficiently mitigates the issues of error accumulation and sub-optimal performance seen in traditional two-step methodologies, the two-step methods continue to be favored in many competitions and practical settings due to their superior modularity. In this paper, we introduce Bridging Text Spotting, a novel approach that resolves the error accumulation and suboptimal performance issues in two-step methods while retaining modularity. To achieve this, we adopt a well-trained detector and recognizer that are developed and trained independently and then lock their parameters to preserve their already acquired capabilities. Subsequently, we introduce a Bridge that connects the locked detector and recognizer through a zero-initialized neural network. This zero-initialized neural network, initialized with weights set to zeros, ensures seamless integration of the large receptive field features in detection into the locked recognizer. Furthermore, since the fixed detector and recognizer cannot naturally acquire end-to-end optimization features, we adopt the Adapter to facilitate their efficient learning of these features. We demonstrate the effectiveness of the proposed method through extensive experiments: Connecting the latest detector and recognizer through Bridging Text Spotting, we achieved an accuracy of 83.3% on Total-Text, 69.8% on CTW1500, and 89.5% on ICDAR 2015. The code is available at https://github.com/mxin262/Bridging-Text-Spotting.
Related papers
- MutDet: Mutually Optimizing Pre-training for Remote Sensing Object Detection [36.478530086163744]
We propose a novel Mutually optimizing pre-training framework for remote sensing object Detection, dubbed as MutDet.
MutDet fuses the object embeddings and detector features bidirectionally in the last encoder layer, enhancing their information interaction.
Experiments on various settings show new state-of-the-art transfer performance.
arXiv Detail & Related papers (2024-07-13T15:28:15Z) - Theoretically Achieving Continuous Representation of Oriented Bounding Boxes [64.15627958879053]
This paper endeavors to completely solve the issue of discontinuity in Oriented Bounding Box representation.
We propose a novel representation method called Continuous OBB (COBB) which can be readily integrated into existing detectors.
For fairness and transparency of experiments, we have developed a modularized benchmark based on the open-source deep learning framework Jittor's detection toolbox JDet for OOD evaluation.
arXiv Detail & Related papers (2024-02-29T09:27:40Z) - SNE-RoadSegV2: Advancing Heterogeneous Feature Fusion and Fallibility Awareness for Freespace Detection [29.348921424716057]
This paper presents a novel heterogeneous feature fusion block, comprising a holistic attention module, a heterogeneous feature contrast descriptor, and an affinity-weighted feature recalibrator.
It incorporates both inter-scale and intra-scale skip connections into the decoder architecture while eliminating redundant ones, leading to both improved accuracy and computational efficiency.
It introduces two fallibility-aware loss functions that separately focus on semantic-transition and depth-inconsistent regions, collectively contributing to greater supervision during model training.
arXiv Detail & Related papers (2024-02-29T07:20:02Z) - Global Context Aggregation Network for Lightweight Saliency Detection of
Surface Defects [70.48554424894728]
We develop a Global Context Aggregation Network (GCANet) for lightweight saliency detection of surface defects on the encoder-decoder structure.
First, we introduce a novel transformer encoder on the top layer of the lightweight backbone, which captures global context information through a novel Depth-wise Self-Attention (DSA) module.
The experimental results on three public defect datasets demonstrate that the proposed network achieves a better trade-off between accuracy and running efficiency compared with other 17 state-of-the-art methods.
arXiv Detail & Related papers (2023-09-22T06:19:11Z) - Read Pointer Meters in complex environments based on a Human-like
Alignment and Recognition Algorithm [16.823681016882315]
We propose a human-like alignment and recognition algorithm to overcome these problems.
A Spatial Transformed Module(STM) is proposed to obtain the front view of images in a self-autonomous way.
A Value Acquisition Module(VAM) is proposed to infer accurate meter values by an end-to-end trained framework.
arXiv Detail & Related papers (2023-02-28T05:37:04Z) - Decoupled and Memory-Reinforced Networks: Towards Effective Feature
Learning for One-Step Person Search [65.51181219410763]
One-step methods have been developed to handle pedestrian detection and identification sub-tasks using a single network.
There are two major challenges in the current one-step approaches.
We propose a decoupled and memory-reinforced network (DMRNet) to overcome these problems.
arXiv Detail & Related papers (2021-02-22T06:19:45Z) - Automatic Extrinsic Calibration Method for LiDAR and Camera Sensor
Setups [68.8204255655161]
We present a method to calibrate the parameters of any pair of sensors involving LiDARs, monocular or stereo cameras.
The proposed approach can handle devices with very different resolutions and poses, as usually found in vehicle setups.
arXiv Detail & Related papers (2021-01-12T12:02:26Z) - Towards End-to-end Car License Plate Location and Recognition in
Unconstrained Scenarios [0.0]
We present an efficient framework to solve the license plate detection and recognition tasks simultaneously.
It is a lightweight and unified deep neural network, that can be optimized end-to-end and work in real-time.
Experimental results indicate that the proposed method significantly outperforms the previous state-of-the-art methods in both speed and precision.
arXiv Detail & Related papers (2020-08-25T09:51:33Z) - SADet: Learning An Efficient and Accurate Pedestrian Detector [68.66857832440897]
This paper proposes a series of systematic optimization strategies for the detection pipeline of one-stage detector.
It forms a single shot anchor-based detector (SADet) for efficient and accurate pedestrian detection.
Though structurally simple, it presents state-of-the-art result and real-time speed of $20$ FPS for VGA-resolution images.
arXiv Detail & Related papers (2020-07-26T12:32:38Z) - Neural Non-Rigid Tracking [26.41847163649205]
We introduce a novel, end-to-end learnable, differentiable non-rigid tracker.
We employ a convolutional neural network to predict dense correspondences and their confidences.
Compared to state-of-the-art approaches, our algorithm shows improved reconstruction performance.
arXiv Detail & Related papers (2020-06-23T18:00:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.