V2X-DGPE: Addressing Domain Gaps and Pose Errors for Robust Collaborative 3D Object Detection
- URL: http://arxiv.org/abs/2501.02363v2
- Date: Sat, 25 Jan 2025 06:57:15 GMT
- Title: V2X-DGPE: Addressing Domain Gaps and Pose Errors for Robust Collaborative 3D Object Detection
- Authors: Sichao Wang, Ming Yuan, Chuang Zhang, Qing Xu, Lei He, Jianqiang Wang,
- Abstract summary: V2X-DGPE is a high-accuracy and robust V2X feature-level collaborative perception framework.
The proposed method outperforms existing approaches, achieving state-of-the-art detection performance.
- Score: 18.694510415777632
- License:
- Abstract: In V2X collaborative perception, the domain gaps between heterogeneous nodes pose a significant challenge for effective information fusion. Pose errors arising from latency and GPS localization noise further exacerbate the issue by leading to feature misalignment. To overcome these challenges, we propose V2X-DGPE, a high-accuracy and robust V2X feature-level collaborative perception framework. V2X-DGPE employs a Knowledge Distillation Framework and a Feature Compensation Module to learn domain-invariant representations from multi-source data, effectively reducing the feature distribution gap between vehicles and roadside infrastructure. Historical information is utilized to provide the model with a more comprehensive understanding of the current scene. Furthermore, a Collaborative Fusion Module leverages a heterogeneous self-attention mechanism to extract and integrate heterogeneous representations from vehicles and infrastructure. To address pose errors, V2X-DGPE introduces a deformable attention mechanism, enabling the model to adaptively focus on critical parts of the input features by dynamically offsetting sampling points. Extensive experiments on the real-world DAIR-V2X dataset demonstrate that the proposed method outperforms existing approaches, achieving state-of-the-art detection performance. The code is available at https://github.com/wangsch10/V2X-DGPE.
Related papers
- PVAFN: Point-Voxel Attention Fusion Network with Multi-Pooling Enhancing for 3D Object Detection [59.355022416218624]
integration of point and voxel representations is becoming more common in LiDAR-based 3D object detection.
We propose a novel two-stage 3D object detector, called Point-Voxel Attention Fusion Network (PVAFN)
PVAFN uses a multi-pooling strategy to integrate both multi-scale and region-specific information effectively.
arXiv Detail & Related papers (2024-08-26T19:43:01Z) - SNE-RoadSegV2: Advancing Heterogeneous Feature Fusion and Fallibility Awareness for Freespace Detection [29.348921424716057]
This paper presents a novel heterogeneous feature fusion block, comprising a holistic attention module, a heterogeneous feature contrast descriptor, and an affinity-weighted feature recalibrator.
It incorporates both inter-scale and intra-scale skip connections into the decoder architecture while eliminating redundant ones, leading to both improved accuracy and computational efficiency.
It introduces two fallibility-aware loss functions that separately focus on semantic-transition and depth-inconsistent regions, collectively contributing to greater supervision during model training.
arXiv Detail & Related papers (2024-02-29T07:20:02Z) - DI-V2X: Learning Domain-Invariant Representation for
Vehicle-Infrastructure Collaborative 3D Object Detection [78.09431523221458]
DI-V2X aims to learn Domain-Invariant representations through a new distillation framework.
DI-V2X comprises three essential components: a domain-mixing instance augmentation (DMA) module, a progressive domain-invariant distillation (PDD) module, and a domain-adaptive fusion (DAF) module.
arXiv Detail & Related papers (2023-12-25T14:40:46Z) - V2X-AHD:Vehicle-to-Everything Cooperation Perception via Asymmetric
Heterogenous Distillation Network [13.248981195106069]
We propose a multi-view vehicle-road cooperation perception system, vehicle-to-everything cooperative perception (V2X-AHD)
The V2X-AHD can effectively improve the accuracy of 3D object detection and reduce the number of network parameters, according to this study.
arXiv Detail & Related papers (2023-10-10T13:12:03Z) - V2X-ViT: Vehicle-to-Everything Cooperative Perception with Vision
Transformer [58.71845618090022]
We build a holistic attention model, namely V2X-ViT, to fuse information across on-road agents.
V2X-ViT consists of alternating layers of heterogeneous multi-agent self-attention and multi-scale window self-attention.
To validate our approach, we create a large-scale V2X perception dataset.
arXiv Detail & Related papers (2022-03-20T20:18:25Z) - Full-Duplex Strategy for Video Object Segmentation [141.43983376262815]
Full- Strategy Network (FSNet) is a novel framework for video object segmentation (VOS)
Our FSNet performs the crossmodal feature-passing (i.e., transmission and receiving) simultaneously before fusion decoding stage.
We show that our FSNet outperforms other state-of-the-arts for both the VOS and video salient object detection tasks.
arXiv Detail & Related papers (2021-08-06T14:50:50Z) - Bi-Bimodal Modality Fusion for Correlation-Controlled Multimodal
Sentiment Analysis [96.46952672172021]
Bi-Bimodal Fusion Network (BBFN) is a novel end-to-end network that performs fusion on pairwise modality representations.
Model takes two bimodal pairs as input due to known information imbalance among modalities.
arXiv Detail & Related papers (2021-07-28T23:33:42Z) - AFD-Net: Adaptive Fully-Dual Network for Few-Shot Object Detection [8.39479809973967]
Few-shot object detection (FSOD) aims at learning a detector that can fast adapt to previously unseen objects with scarce examples.
Existing methods solve this problem by performing subtasks of classification and localization utilizing a shared component.
We present that a general few-shot detector should consider the explicit decomposition of two subtasks, as well as leveraging information from both of them to enhance feature representations.
arXiv Detail & Related papers (2020-11-30T10:21:32Z) - Dynamic Dual-Attentive Aggregation Learning for Visible-Infrared Person
Re-Identification [208.1227090864602]
Visible-infrared person re-identification (VI-ReID) is a challenging cross-modality pedestrian retrieval problem.
Existing VI-ReID methods tend to learn global representations, which have limited discriminability and weak robustness to noisy images.
We propose a novel dynamic dual-attentive aggregation (DDAG) learning method by mining both intra-modality part-level and cross-modality graph-level contextual cues for VI-ReID.
arXiv Detail & Related papers (2020-07-18T03:08:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.