Edge Based Oriented Object Detection
- URL: http://arxiv.org/abs/2309.08265v1
- Date: Fri, 15 Sep 2023 09:19:38 GMT
- Title: Edge Based Oriented Object Detection
- Authors: Jianghu Shen, Xiaojun Wu
- Abstract summary: We propose a unique loss function based on edge gradients to enhance the detection accuracy of oriented objects.
We achieve a mAP increase of 1.3% on the DOTA dataset.
- Score: 8.075609633483248
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the field of remote sensing, we often utilize oriented bounding boxes
(OBB) to bound the objects. This approach significantly reduces the overlap
among dense detection boxes and minimizes the inclusion of background content
within the bounding boxes. To enhance the detection accuracy of oriented
objects, we propose a unique loss function based on edge gradients, inspired by
the similarity measurement function used in template matching task. During this
process, we address the issues of non-differentiability of the function and the
semantic alignment between gradient vectors in ground truth (GT) boxes and
predicted boxes (PB). Experimental results show that our proposed loss function
achieves $0.6\%$ mAP improvement compared to the commonly used Smooth L1 loss
in the baseline algorithm. Additionally, we design an edge-based self-attention
module to encourage the detection network to focus more on the object edges.
Leveraging these two innovations, we achieve a mAP increase of 1.3% on the DOTA
dataset.
Related papers
- Sparse Prior Is Not All You Need: When Differential Directionality Meets Saliency Coherence for Infrared Small Target Detection [15.605122893098981]
This study introduces a Sparse Differential Directionality prior (SDD) framework.
We leverage the distinct directional characteristics of targets to differentiate them from the background.
We further enhance target detectability with a saliency coherence strategy.
A Proximal Alternating Minimization-based (PAM) algorithm efficiently solves our proposed model.
arXiv Detail & Related papers (2024-07-22T04:32:43Z) - PointOBB: Learning Oriented Object Detection via Single Point
Supervision [55.88982271340328]
This paper proposes PointOBB, the first single Point-based OBB generation method, for oriented object detection.
PointOBB operates through the collaborative utilization of three distinctive views: an original view, a resized view, and a rotated/flipped (rot/flp) view.
Experimental results on the DIOR-R and DOTA-v1.0 datasets demonstrate that PointOBB achieves promising performance.
arXiv Detail & Related papers (2023-11-23T15:51:50Z) - MPDIoU: A Loss for Efficient and Accurate Bounding Box Regression [0.0]
We propose a novel bounding box similarity comparison metric MPDIoU.
The MPDIoU loss function is applied to state-of-the-art instance segmentation (e.g., YOLACT) and object detection (e.g., YOLOv7) model trained on PASCAL VOC, MS COCO, and IIIT5k.
arXiv Detail & Related papers (2023-07-14T23:54:49Z) - OriCon3D: Effective 3D Object Detection using Orientation and Confidence [0.0]
We propose an advanced methodology for the detection of 3D objects from a single image.
We use a deep convolutional neural network-based 3D object weighted orientation regression paradigm.
Our approach significantly improves the accuracy of 3D object pose determination, surpassing baseline methodologies.
arXiv Detail & Related papers (2023-04-27T19:52:47Z) - OPA-3D: Occlusion-Aware Pixel-Wise Aggregation for Monocular 3D Object
Detection [51.153003057515754]
OPA-3D is a single-stage, end-to-end, Occlusion-Aware Pixel-Wise Aggregation network.
It jointly estimates dense scene depth with depth-bounding box residuals and object bounding boxes.
It outperforms state-of-the-art methods on the main Car category.
arXiv Detail & Related papers (2022-11-02T14:19:13Z) - Boosting Few-shot Fine-grained Recognition with Background Suppression
and Foreground Alignment [53.401889855278704]
Few-shot fine-grained recognition (FS-FGR) aims to recognize novel fine-grained categories with the help of limited available samples.
We propose a two-stage background suppression and foreground alignment framework, which is composed of a background activation suppression (BAS) module, a foreground object alignment (FOA) module, and a local to local (L2L) similarity metric.
Experiments conducted on multiple popular fine-grained benchmarks demonstrate that our method outperforms the existing state-of-the-art by a large margin.
arXiv Detail & Related papers (2022-10-04T07:54:40Z) - Detecting Rotated Objects as Gaussian Distributions and Its 3-D
Generalization [81.29406957201458]
Existing detection methods commonly use a parameterized bounding box (BBox) to model and detect (horizontal) objects.
We argue that such a mechanism has fundamental limitations in building an effective regression loss for rotation detection.
We propose to model the rotated objects as Gaussian distributions.
We extend our approach from 2-D to 3-D with a tailored algorithm design to handle the heading estimation.
arXiv Detail & Related papers (2022-09-22T07:50:48Z) - ImpDet: Exploring Implicit Fields for 3D Object Detection [74.63774221984725]
We introduce a new perspective that views bounding box regression as an implicit function.
This leads to our proposed framework, termed Implicit Detection or ImpDet.
Our ImpDet assigns specific values to points in different local 3D spaces, thereby high-quality boundaries can be generated.
arXiv Detail & Related papers (2022-03-31T17:52:12Z) - Regressive Domain Adaptation for Unsupervised Keypoint Detection [67.2950306888855]
Domain adaptation (DA) aims at transferring knowledge from a labeled source domain to an unlabeled target domain.
We present a method of regressive domain adaptation (RegDA) for unsupervised keypoint detection.
Our method brings large improvement by 8% to 11% in terms of PCK on different datasets.
arXiv Detail & Related papers (2021-03-10T16:45:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.