論文の概要: Always be Pre-Training: Representation Learning for Network Intrusion Detection with GNNs
- arxiv url: http://arxiv.org/abs/2402.18986v1
- Date: Thu, 29 Feb 2024 09:40:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 06:49:31.420061
- Title: Always be Pre-Training: Representation Learning for Network Intrusion Detection with GNNs
- Title(参考訳): 常に事前学習:GNNを用いたネットワーク侵入検出のための表現学習
- Authors: Zhengyao Gu, Diego Troy Lopez, Lilas Alrahis, Ozgur Sinanoglu,
- Abstract要約: グラフニューラルネットワークに基づくネットワーク侵入検知システムは、最近、ベンチマークデータセットで最先端のパフォーマンスを実証した。
これらの手法は、データ前処理のターゲットエンコーディングに依存しており、アノテートされたラベルを必要とするため、広く採用されることが制限される。
本稿では,ラベル依存度制限を克服するために,文脈内事前学習とカテゴリ的特徴に対する高密度表現の利用を含むソリューションを提案する。
- 参考スコア(独自算出の注目度): 6.589041710104928
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural network-based network intrusion detection systems have recently demonstrated state-of-the-art performance on benchmark datasets. Nevertheless, these methods suffer from a reliance on target encoding for data pre-processing, limiting widespread adoption due to the associated need for annotated labels--a cost-prohibitive requirement. In this work, we propose a solution involving in-context pre-training and the utilization of dense representations for categorical features to jointly overcome the label-dependency limitation. Our approach exhibits remarkable data efficiency, achieving over 98% of the performance of the supervised state-of-the-art with less than 4% labeled data on the NF-UQ-NIDS-V2 dataset.
- Abstract(参考訳): グラフニューラルネットワークに基づくネットワーク侵入検知システムは、最近、ベンチマークデータセットで最先端のパフォーマンスを実証した。
それにもかかわらず、これらの手法はデータ前処理のターゲットエンコーディングに依存しており、アノテートされたラベルの必要性によって広く採用されるのを制限している。
そこで本研究では,ラベル依存度制限を克服するために,文脈内事前学習とカテゴリ的特徴に対する高密度表現の利用を含むソリューションを提案する。
提案手法は,NF-UQ-NIDS-V2データセット上で4%未満のラベル付きデータを用いて,教師付き最先端技術の性能の98%以上を達成している。
関連論文リスト
- Self-Supervised Learning for User Localization [8.529237718266042]
機械学習技術は、ローカライゼーションタスクにおいて顕著な精度を示している。
大量のラベル付きデータ、特にChannel State Information(CSI)およびそれに対応する座標への依存は、依然としてボトルネックである。
CSIに基づくユーザローカライゼーションのための教師付き学習性能を高めるために,ラベルなしデータによる自己教師付き事前学習を活用する先駆的手法を提案する。
論文 参考訳(メタデータ) (2024-04-19T21:49:10Z) - Applying Self-supervised Learning to Network Intrusion Detection for
Network Flows with Graph Neural Network [8.318363497010969]
本稿では,教師なし型ネットワークフローの特定のためのGNNの適用について検討する。
我々の知る限り、NIDSにおけるネットワークフローのマルチクラス分類のための最初のGNNベースの自己教師方式である。
論文 参考訳(メタデータ) (2024-03-03T12:34:13Z) - GraphGuard: Detecting and Counteracting Training Data Misuse in Graph
Neural Networks [69.97213941893351]
グラフデータ分析におけるグラフニューラルネットワーク(GNN)の出現は、モデルトレーニング中のデータ誤用に関する重要な懸念を引き起こしている。
既存の手法は、データ誤用検出または緩和のいずれかに対応しており、主にローカルGNNモデル用に設計されている。
本稿では,これらの課題に対処するため,GraphGuardという先駆的なアプローチを導入する。
論文 参考訳(メタデータ) (2023-12-13T02:59:37Z) - Investigation and rectification of NIDS datasets and standratized
feature set derivation for network attack detection with graph neural
networks [0.0]
グラフニューラルネットワーク(GNN)は、フロー機能とともにネットワークトポロジを分析する機会を提供する。
本稿では,ToN-IoTデータセットの異なるバージョンを調査し,いくつかのバージョンで矛盾点を指摘する。
本稿では,NetFlowv5互換データからのみ派生した,新しい標準化およびコンパクトなフロー特徴セットを提案する。
論文 参考訳(メタデータ) (2022-12-26T07:42:25Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
表情認識のためのSFUDA法を提案する。
本手法は,自己教師付き事前学習を利用して,対象データから優れた特徴表現を学習する。
提案手法の有効性を4つの適応方式で検証し,FERに適用した場合,既存のSFUDA法より一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-10-11T08:24:50Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
補間型相関低減ネットワーク(ICRN)と呼ばれる新しいグラフコントラスト学習手法を提案する。
提案手法では,決定境界のマージンを大きくすることで,潜在特徴の識別能力を向上させる。
この2つの設定を組み合わせることで、豊富なラベル付きノードと稀に価値あるラベル付きノードから豊富な監視情報を抽出し、離散表現学習を行う。
論文 参考訳(メタデータ) (2022-06-06T14:26:34Z) - Bridging the gap to real-world for network intrusion detection systems
with data-centric approach [1.4699455652461724]
本稿では、NIDS研究の現在の限界に対処するために、体系的なデータ中心のアプローチを提案する。
最新のネットワークトラフィックとアタックで構成されたNIDSデータセットを生成し、ラベリングプロセスは設計によって統合される。
論文 参考訳(メタデータ) (2021-10-25T04:50:12Z) - WSSOD: A New Pipeline for Weakly- and Semi-Supervised Object Detection [75.80075054706079]
弱機能および半教師付きオブジェクト検出フレームワーク(WSSOD)を提案する。
エージェント検出器は、まず関節データセット上でトレーニングされ、弱注釈画像上で擬似境界ボックスを予測するために使用される。
提案フレームワークはPASCAL-VOC と MSCOCO のベンチマークで顕著な性能を示し,完全教師付き環境で得られたものと同等の性能を達成している。
論文 参考訳(メタデータ) (2021-05-21T11:58:50Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
最近のコンピュータビジョンの進歩は、分類モデルの一般化能力を改善するために、逆データ拡張を利用する。
本稿では,中間的特徴埋め込みにおける敵対的拡張を提唱する効率的かつ効率的な代替手法を提案する。
代表的なバックボーンネットワークを用いて,多様な視覚認識タスクにまたがる提案手法を検証する。
論文 参考訳(メタデータ) (2021-03-22T20:36:34Z) - Contrastive and Generative Graph Convolutional Networks for Graph-based
Semi-Supervised Learning [64.98816284854067]
グラフベースのSemi-Supervised Learning (SSL)は、少数のラベル付きデータのラベルをグラフ経由で残りの巨大なラベル付きデータに転送することを目的としている。
本稿では,データ類似性とグラフ構造を両立させ,監視信号の強化を図るため,新しいGCNベースのSSLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-09-15T13:59:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。