論文の概要: Analysis of the Two-Step Heterogeneous Transfer Learning for Laryngeal Blood Vessel Classification: Issue and Improvement
- arxiv url: http://arxiv.org/abs/2402.19001v3
- Date: Sun, 14 Apr 2024 21:13:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-16 20:31:43.344311
- Title: Analysis of the Two-Step Heterogeneous Transfer Learning for Laryngeal Blood Vessel Classification: Issue and Improvement
- Title(参考訳): 喉頭血管分類における2段階異種移行学習の検討 : 課題と改善
- Authors: Xinyi Fang, Xu Yang, Chak Fong Chong, Kei Long Wong, Yapeng Wang, Tiankui Zhang, Sio-Kei Im,
- Abstract要約: 本研究は喉頭病変分類のための2段階ヘテロジニアストランスファーラーニング(THTL)のパイオニアである。
中間領域は糖尿病網膜症カラー・ファンドス画像,意味的には非同一であるが血管像である。
本稿では、SWFT(Step-Wise Fine-Tuning)と呼ばれるTHTLの微調整戦略を改良し、ResNetモデルに適用する。
- 参考スコア(独自算出の注目度): 8.7937485450551
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate classification of laryngeal vascular as benign or malignant is crucial for early detection of laryngeal cancer. However, organizations with limited access to laryngeal vascular images face challenges due to the lack of large and homogeneous public datasets for effective learning. Distinguished from the most familiar works, which directly transfer the ImageNet pre-trained models to the target domain for fine-tuning, this work pioneers exploring two-step heterogeneous transfer learning (THTL) for laryngeal lesion classification with nine deep-learning models, utilizing the diabetic retinopathy color fundus images, semantically non-identical yet vascular images, as the intermediate domain. Attention visualization technique, Layer Class Activate Map (LayerCAM), reveals a novel finding that yet the intermediate and the target domain both reflect vascular structure to a certain extent, the prevalent radial vascular pattern in the intermediate domain prevents learning the features of twisted and tangled vessels that distinguish the malignant class in the target domain, summarizes a vital rule for laryngeal lesion classification using THTL. To address this, we introduce an enhanced fine-tuning strategy in THTL called Step-Wise Fine-Tuning (SWFT) and apply it to the ResNet models. SWFT progressively refines model performance by accumulating fine-tuning layers from back to front, guided by the visualization results of LayerCAM. Comparison with the original THTL approach shows significant improvements. For ResNet18, the accuracy and malignant recall increases by 26.1% and 79.8%, respectively, while for ResNet50, these indicators improve by 20.4% and 62.2%, respectively.
- Abstract(参考訳): 喉頭癌の早期発見には良性・悪性の喉頭血管の正確な分類が重要である。
しかし、喉頭血管画像へのアクセスが限られている組織は、効果的な学習のための大規模で均質な公開データセットが欠如しているため、課題に直面している。
この研究は、9つのディープラーニングモデルを用いた喉頭病変分類のための2段階のヘテロジニアストランスファーラーニング(THTL)を探索し、糖尿病網膜症カラーファンドス画像(意味論的に非同一であるが血管画像)を中間領域として利用した。
注意可視化技術であるLayerCAM(LayerCAM)は、中間領域と対象領域の両方が血管構造をある程度反映しているにもかかわらず、中間ドメインの固有な放射状血管パターンは、標的ドメインの悪性クラスを区別するねじれと絡み合った血管の特徴を学習するのを防ぎ、THTLを用いた喉頭病変分類における重要な規則を要約している。
そこで本研究では,SWFT(Step-Wise Fine-Tuning)と呼ばれるTHTLの微調整戦略を導入し,ResNetモデルに適用する。
SWFTは、LayerCAMの可視化結果によって導かれる微調整層を前後に蓄積することで、モデル性能を段階的に改善する。
オリジナルのTHTLアプローチと比較すると、大きな改善が見られた。
ResNet18では精度が26.1%、悪性リコールは79.8%向上し、ResNet50では20.4%、62.2%向上した。
関連論文リスト
- Explainable Convolutional Neural Networks for Retinal Fundus Classification and Cutting-Edge Segmentation Models for Retinal Blood Vessels from Fundus Images [0.0]
眼底画像における網膜血管の検査による早期診断の重要領域に焦点を当てた研究。
基礎画像解析の研究は,8つの事前学習CNNモデルを用いたディープラーニングに基づく分類を進歩させる。
本研究では,Grad-CAM,Grad-CAM++,Score-CAM,Faster Score-CAM,Layer CAMなどの説明可能なAI技術を利用する。
論文 参考訳(メタデータ) (2024-05-12T17:21:57Z) - Transformer-Based Self-Supervised Learning for Histopathological Classification of Ischemic Stroke Clot Origin [0.0]
虚血性脳卒中における血栓塞栓源の同定は治療と二次予防に不可欠である。
本研究は,虚血性脳梗塞の発生源を分類するためのエンボリのデジタル病理学における自己教師型深層学習アプローチについて述べる。
論文 参考訳(メタデータ) (2024-05-01T23:40:12Z) - Glioma subtype classification from histopathological images using
in-domain and out-of-domain transfer learning: An experimental study [9.161480191416551]
成人型びまん性グリオーマのコンピュータ支援分類のための様々な伝達学習戦略と深層学習アーキテクチャを比較した。
半教師付き学習手法を提案し、細調整されたモデルを用いて、スライド画像全体の無注釈領域のラベルを予測する。
モデルはその後、前のステップで決定された接地構造ラベルと弱いラベルを用いて再訓練され、標準のドメイン間転送学習と比較して優れた性能を提供する。
論文 参考訳(メタデータ) (2023-09-29T13:22:17Z) - Deep Angiogram: Trivializing Retinal Vessel Segmentation [1.8479315677380455]
本研究では,無関係な特徴をフィルタリングし,深部血管造影という潜像を合成するコントラスト型変分自動エンコーダを提案する。
合成ネットワークの一般化性は、画像コントラストとノイズの特徴の変動に敏感なモデルを実現するコントラスト損失によって改善される。
論文 参考訳(メタデータ) (2023-07-01T06:13:10Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - Multi-Scale Input Strategies for Medulloblastoma Tumor Classification
using Deep Transfer Learning [59.30734371401316]
乳腺芽腫は小児で最も多い悪性脳腫瘍である。
CNNはMBサブタイプ分類に有望な結果を示した。
タイルサイズと入力戦略の影響について検討した。
論文 参考訳(メタデータ) (2021-09-14T09:42:37Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
本稿では,エンド・ツー・エンドのMB腫瘍分類を提案し,様々な入力サイズとネットワーク次元の一致した移動学習を提案する。
161ケースのデータセットを用いて、より大規模な入力解像度を持つ事前学習されたEfficientNetが、大幅な性能改善をもたらすことを実証した。
論文 参考訳(メタデータ) (2021-09-10T13:07:11Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
CT画像によるコロナウイルス病2019(COVID-19)の早期かつ正確な重症度評価は,集中治療単位のイベント推定に有効である。
ラベル付きデータを拡張し、分類モデルの一般化能力を向上させるためには、複数のサイトからデータを集約する必要がある。
この課題は、軽度の感染症と重度の感染症の集団不均衡、部位間のドメイン分布の相違、不均一な特徴の存在など、いくつかの課題に直面する。
論文 参考訳(メタデータ) (2021-09-08T07:56:51Z) - Consistent Posterior Distributions under Vessel-Mixing: A Regularization
for Cross-Domain Retinal Artery/Vein Classification [30.30848090813239]
網膜A/V分類におけるクロスドメイン学習のための船舶混合型整合性正規化フレームワークを提案する。
提案手法は,対象ドメインに対する教師付き学習によって得られる上界に近い,最先端のクロスドメイン性能を実現する。
論文 参考訳(メタデータ) (2021-03-16T14:18:35Z) - Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images [152.34988415258988]
CT画像からの肺感染症の自動検出は、新型コロナウイルスに対処するための従来の医療戦略を強化する大きな可能性を秘めている。
CTスライスから感染領域を分割することは、高い感染特性の変化、感染と正常な組織の間の低強度のコントラストなど、いくつかの課題に直面している。
これらの課題に対処するため, 胸部CTスライスから感染部位を自動的に同定する, 新型のCOVID-19 Deep Lung infection Network (Inf-Net) が提案されている。
論文 参考訳(メタデータ) (2020-04-22T07:30:56Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
未熟児網膜症(英: Retinopathy of Prematurity、ROP)は、主に体重の低い未熟児に影響を及ぼす眼疾患である。
網膜の血管の増殖を招き、視力喪失を招き、最終的には網膜剥離を招き、失明を引き起こす。
近年,ディープラーニングを用いて診断を自動化する試みが盛んに行われている。
本稿では,従来のモデルの成功を基盤として,オブジェクトセグメンテーションと畳み込みニューラルネットワーク(CNN)を組み合わせた新しいアーキテクチャを開発する。
提案システムでは,まず対象分割モデルを訓練し,画素レベルでの区切り線を識別し,その結果のマスクを追加の"カラー"チャネルとして付加する。
論文 参考訳(メタデータ) (2020-04-03T14:07:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。