Trajectory Consistency Distillation: Improved Latent Consistency Distillation by Semi-Linear Consistency Function with Trajectory Mapping
- URL: http://arxiv.org/abs/2402.19159v2
- Date: Mon, 15 Apr 2024 13:51:17 GMT
- Title: Trajectory Consistency Distillation: Improved Latent Consistency Distillation by Semi-Linear Consistency Function with Trajectory Mapping
- Authors: Jianbin Zheng, Minghui Hu, Zhongyi Fan, Chaoyue Wang, Changxing Ding, Dacheng Tao, Tat-Jen Cham,
- Abstract summary: Trajectory Consistency Distillation (TCD) encompasses trajectory consistency function and strategic sampling.
TCD significantly enhances image quality at low NFEs but also yields more detailed results compared to the teacher model.
- Score: 75.72212215739746
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Latent Consistency Model (LCM) extends the Consistency Model to the latent space and leverages the guided consistency distillation technique to achieve impressive performance in accelerating text-to-image synthesis. However, we observed that LCM struggles to generate images with both clarity and detailed intricacy. Consequently, we introduce Trajectory Consistency Distillation (TCD), which encompasses trajectory consistency function and strategic stochastic sampling. The trajectory consistency function diminishes the parameterisation and distillation errors by broadening the scope of the self-consistency boundary condition with trajectory mapping and endowing the TCD with the ability to accurately trace the entire trajectory of the Probability Flow ODE in semi-linear form with an Exponential Integrator. Additionally, strategic stochastic sampling provides explicit control of stochastic and circumvents the accumulated errors inherent in multi-step consistency sampling. Experiments demonstrate that TCD not only significantly enhances image quality at low NFEs but also yields more detailed results compared to the teacher model at high NFEs.
Related papers
- Regulating Model Reliance on Non-Robust Features by Smoothing Input Marginal Density [93.32594873253534]
Trustworthy machine learning requires meticulous regulation of model reliance on non-robust features.
We propose a framework to delineate and regulate such features by attributing model predictions to the input.
arXiv Detail & Related papers (2024-07-05T09:16:56Z) - Consistency Purification: Effective and Efficient Diffusion Purification towards Certified Robustness [28.09748997491938]
We introduce Consistency Purification, an efficiency-effectiveness superior purifier compared to the previous work.
The consistency model is a one-step generative model distilled from PF-ODE, thus can generate on-manifold purified images with a single network evaluation.
Our comprehensive experiments demonstrate that our Consistency Purification framework achieves state-of-the-art certified robustness and efficiency compared to baseline methods.
arXiv Detail & Related papers (2024-06-30T08:34:35Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
Diffusion-based generative models use differential equations to establish a smooth connection between a complex data distribution and a tractable prior distribution.
In this paper, we identify several intriguing trajectory properties in the ODE-based sampling process of diffusion models.
arXiv Detail & Related papers (2024-05-18T15:59:41Z) - Distilling Diffusion Models into Conditional GANs [90.76040478677609]
We distill a complex multistep diffusion model into a single-step conditional GAN student model.
For efficient regression loss, we propose E-LatentLPIPS, a perceptual loss operating directly in diffusion model's latent space.
We demonstrate that our one-step generator outperforms cutting-edge one-step diffusion distillation models.
arXiv Detail & Related papers (2024-05-09T17:59:40Z) - Towards a mathematical theory for consistency training in diffusion
models [17.632123036281957]
This paper takes a first step towards establishing theoretical underpinnings for consistency models.
We demonstrate that, in order to generate samples within $varepsilon$ proximity to the target in distribution, it suffices for the number of steps in consistency learning to exceed the order of $d5/2/varepsilon$, with the data dimension.
Our theory offers rigorous insights into the validity and efficacy of consistency models, illuminating their utility in downstream inference tasks.
arXiv Detail & Related papers (2024-02-12T17:07:02Z) - Latent Consistency Models: Synthesizing High-Resolution Images with
Few-Step Inference [60.32804641276217]
We propose Latent Consistency Models (LCMs), enabling swift inference with minimal steps on any pre-trained LDMs.
A high-quality 768 x 768 24-step LCM takes only 32 A100 GPU hours for training.
We also introduce Latent Consistency Fine-tuning (LCF), a novel method that is tailored for fine-tuning LCMs on customized image datasets.
arXiv Detail & Related papers (2023-10-06T17:11:58Z) - Provable Guarantees for Generative Behavior Cloning: Bridging Low-Level
Stability and High-Level Behavior [51.60683890503293]
We propose a theoretical framework for studying behavior cloning of complex expert demonstrations using generative modeling.
We show that pure supervised cloning can generate trajectories matching the per-time step distribution of arbitrary expert trajectories.
arXiv Detail & Related papers (2023-07-27T04:27:26Z) - Convergence and sample complexity of gradient methods for the model-free
linear quadratic regulator problem [27.09339991866556]
We show that ODE searches for optimal control for an unknown computation system by directly searching over the corresponding space of controllers.
We take a step towards demystifying the performance and efficiency of such methods by focusing on the gradient-flow dynamics set of stabilizing feedback gains and a similar result holds for the forward disctization of the ODE.
arXiv Detail & Related papers (2019-12-26T16:56:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.