Towards Safe and Reliable Autonomous Driving: Dynamic Occupancy Set Prediction
- URL: http://arxiv.org/abs/2402.19385v2
- Date: Sun, 2 Jun 2024 04:45:00 GMT
- Title: Towards Safe and Reliable Autonomous Driving: Dynamic Occupancy Set Prediction
- Authors: Wenbo Shao, Jiahui Xu, Wenhao Yu, Jun Li, Hong Wang,
- Abstract summary: This study introduces a novel method for Dynamic Occupancy Set (DOS) prediction, it effectively combines advanced trajectory prediction networks with a DOS prediction module.
The innovative contributions of this study include the development of a novel DOS prediction model specifically tailored for navigating complex scenarios.
- Score: 12.336412741837407
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the rapidly evolving field of autonomous driving, reliable prediction is pivotal for vehicular safety. However, trajectory predictions often deviate from actual paths, particularly in complex and challenging environments, leading to significant errors. To address this issue, our study introduces a novel method for Dynamic Occupancy Set (DOS) prediction, it effectively combines advanced trajectory prediction networks with a DOS prediction module, overcoming the shortcomings of existing models. It provides a comprehensive and adaptable framework for predicting the potential occupancy sets of traffic participants. The innovative contributions of this study include the development of a novel DOS prediction model specifically tailored for navigating complex scenarios, the introduction of precise DOS mathematical representations, and the formulation of optimized loss functions that collectively advance the safety and efficiency of autonomous systems. Through rigorous validation, our method demonstrates marked improvements over traditional models, establishing a new benchmark for safety and operational efficiency in intelligent transportation systems.
Related papers
- Characterized Diffusion Networks for Enhanced Autonomous Driving Trajectory Prediction [0.6202955567445396]
We present a novel trajectory prediction model for autonomous driving.
Our model enhances the accuracy and reliability of trajectory predictions by incorporating uncertainty estimation and complex agent interactions.
The proposed model showcases strong potential for application in real-world autonomous driving systems.
arXiv Detail & Related papers (2024-11-25T15:03:44Z) - Annealed Winner-Takes-All for Motion Forecasting [48.200282332176094]
We show how an aWTA loss can be integrated with state-of-the-art motion forecasting models to enhance their performance.
Our approach can be easily incorporated into any trajectory prediction model normally trained using WTA.
arXiv Detail & Related papers (2024-09-17T13:26:17Z) - Motion Forecasting via Model-Based Risk Minimization [8.766024024417316]
We propose a novel sampling method applicable to trajectory prediction based on the predictions of multiple models.
We first show that conventional sampling based on predicted probabilities can degrade performance due to missing alignment between models.
By using state-of-the-art models as base learners, our approach constructs diverse and effective ensembles for optimal trajectory sampling.
arXiv Detail & Related papers (2024-09-16T09:03:28Z) - Certified Human Trajectory Prediction [66.1736456453465]
Tray prediction plays an essential role in autonomous vehicles.
We propose a certification approach tailored for the task of trajectory prediction.
We address the inherent challenges associated with trajectory prediction, including unbounded outputs, and mutli-modality.
arXiv Detail & Related papers (2024-03-20T17:41:35Z) - RACER: Rational Artificial Intelligence Car-following-model Enhanced by
Reality [51.244807332133696]
This paper introduces RACER, a cutting-edge deep learning car-following model to predict Adaptive Cruise Control (ACC) driving behavior.
Unlike conventional models, RACER effectively integrates Rational Driving Constraints (RDCs), crucial tenets of actual driving.
RACER excels across key metrics, such as acceleration, velocity, and spacing, registering zero violations.
arXiv Detail & Related papers (2023-12-12T06:21:30Z) - AdvDO: Realistic Adversarial Attacks for Trajectory Prediction [87.96767885419423]
Trajectory prediction is essential for autonomous vehicles to plan correct and safe driving behaviors.
We devise an optimization-based adversarial attack framework to generate realistic adversarial trajectories.
Our attack can lead an AV to drive off road or collide into other vehicles in simulation.
arXiv Detail & Related papers (2022-09-19T03:34:59Z) - Bootstrap Motion Forecasting With Self-Consistent Constraints [52.88100002373369]
We present a novel framework to bootstrap Motion forecasting with Self-consistent Constraints.
The motion forecasting task aims at predicting future trajectories of vehicles by incorporating spatial and temporal information from the past.
We show that our proposed scheme consistently improves the prediction performance of several existing methods.
arXiv Detail & Related papers (2022-04-12T14:59:48Z) - TAE: A Semi-supervised Controllable Behavior-aware Trajectory Generator
and Predictor [3.6955256596550137]
Trajectory generation and prediction play important roles in planner evaluation and decision making for intelligent vehicles.
We propose a behavior-aware Trajectory Autoencoder (TAE) that explicitly models drivers' behavior.
Our model addresses trajectory generation and prediction in a unified architecture and benefits both tasks.
arXiv Detail & Related papers (2022-03-02T17:37:44Z) - Spatio-Temporal Graph Dual-Attention Network for Multi-Agent Prediction
and Tracking [23.608125748229174]
We propose a generic generative neural system for multi-agent trajectory prediction involving heterogeneous agents.
The proposed system is evaluated on three public benchmark datasets for trajectory prediction.
arXiv Detail & Related papers (2021-02-18T02:25:35Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
Roads have well defined geometries, topologies, and traffic rules.
In this paper we propose to incorporate structured priors as a loss function.
We demonstrate the effectiveness of our approach on real-world self-driving datasets.
arXiv Detail & Related papers (2020-06-04T03:56:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.