FlowCyt: A Comparative Study of Deep Learning Approaches for Multi-Class Classification in Flow Cytometry Benchmarking
- URL: http://arxiv.org/abs/2403.00024v2
- Date: Thu, 25 Apr 2024 09:20:47 GMT
- Title: FlowCyt: A Comparative Study of Deep Learning Approaches for Multi-Class Classification in Flow Cytometry Benchmarking
- Authors: Lorenzo Bini, Fatemeh Nassajian Mojarrad, Margarita Liarou, Thomas Matthes, Stéphane Marchand-Maillet,
- Abstract summary: FlowCyt is the first comprehensive benchmark for multi-class single-cell classification in flowencoded data.
The dataset comprises bone marrow samples from 30 patients, with each cell characterized by twelve markers.
- Score: 1.6712896227173808
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents FlowCyt, the first comprehensive benchmark for multi-class single-cell classification in flow cytometry data. The dataset comprises bone marrow samples from 30 patients, with each cell characterized by twelve markers. Ground truth labels identify five hematological cell types: T lymphocytes, B lymphocytes, Monocytes, Mast cells, and Hematopoietic Stem/Progenitor Cells (HSPCs). Experiments utilize supervised inductive learning and semi-supervised transductive learning on up to 1 million cells per patient. Baseline methods include Gaussian Mixture Models, XGBoost, Random Forests, Deep Neural Networks, and Graph Neural Networks (GNNs). GNNs demonstrate superior performance by exploiting spatial relationships in graph-encoded data. The benchmark allows standardized evaluation of clinically relevant classification tasks, along with exploratory analyses to gain insights into hematological cell phenotypes. This represents the first public flow cytometry benchmark with a richly annotated, heterogeneous dataset. It will empower the development and rigorous assessment of novel methodologies for single-cell analysis.
Related papers
- MMIL: A novel algorithm for disease associated cell type discovery [58.044870442206914]
Single-cell datasets often lack individual cell labels, making it challenging to identify cells associated with disease.
We introduce Mixture Modeling for Multiple Learning Instance (MMIL), an expectation method that enables the training and calibration of cell-level classifiers.
arXiv Detail & Related papers (2024-06-12T15:22:56Z) - Injecting Hierarchical Biological Priors into Graph Neural Networks for Flow Cytometry Prediction [1.7709249262395883]
This work explores injecting hierarchical prior knowledge into graph neural networks (GNNs) for single-cell multi-class classification of cellular data.
We propose our hierarchical plug-in method to be applied to several GNN models, namely, FCHC-GNN, and effectively designed to capture neighborhood information crucial for single-cell FC domain.
arXiv Detail & Related papers (2024-05-28T18:24:16Z) - HemaGraph: Breaking Barriers in Hematologic Single Cell Classification
with Graph Attention [0.9499648210774584]
HemaGraph is a novel framework for single-cell multi-class classification of hematological cells from flow data.
Based on evaluation of data from 30 patients, HemaGraph demonstrates classification performance across five different cell classes.
We envision applying this method to single-cell data from larger cohort of patients and on other hematologic diseases.
arXiv Detail & Related papers (2024-02-28T15:15:38Z) - UniCell: Universal Cell Nucleus Classification via Prompt Learning [76.11864242047074]
We propose a universal cell nucleus classification framework (UniCell)
It employs a novel prompt learning mechanism to uniformly predict the corresponding categories of pathological images from different dataset domains.
In particular, our framework adopts an end-to-end architecture for nuclei detection and classification, and utilizes flexible prediction heads for adapting various datasets.
arXiv Detail & Related papers (2024-02-20T11:50:27Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
We develop an attention-enhanced graph autoencoder, which is designed to efficiently capture the topological features between cells.
During the clustering process, we integrated both sets of information and reconstructed the features of both cells and genes to generate a discriminative representation.
This research offers enhanced insights into the characteristics and distribution of cells, thereby laying the groundwork for early diagnosis and treatment of diseases.
arXiv Detail & Related papers (2023-11-28T09:14:55Z) - Tertiary Lymphoid Structures Generation through Graph-based Diffusion [54.37503714313661]
In this work, we leverage state-of-the-art graph-based diffusion models to generate biologically meaningful cell-graphs.
We show that the adopted graph diffusion model is able to accurately learn the distribution of cells in terms of their tertiary lymphoid structures (TLS) content.
arXiv Detail & Related papers (2023-10-10T14:37:17Z) - Machine Learning for Flow Cytometry Data Analysis [0.0]
Flow cytometers can rapidly analyse tens of thousands of cells at the same time while also measuring multiple parameters from a single cell.
Researchers need to be able to distinguish interesting-looking cell populations manually in multi-dimensional data collected from millions of cells.
Three representative automated clustering algorithms are selected to be applied, compared and evaluated by completely and partially automated gating.
arXiv Detail & Related papers (2023-03-16T00:43:46Z) - Topological Data Analysis in Time Series: Temporal Filtration and
Application to Single-Cell Genomics [13.173307471333619]
We propose the single-cell topological simplicial analysis (scTSA)
Applying this approach to the single-cell gene expression profiles from local networks of cells reveals a previously unseen topology of cellular ecology.
Benchmarked on the single-cell RNA-seq data of zebrafish embryogenesis spanning 38,731 cells, 25 cell types and 12 time steps, our approach highlights the gastrulation as the most critical stage.
arXiv Detail & Related papers (2022-04-29T12:46:14Z) - Interpretable Single-Cell Set Classification with Kernel Mean Embeddings [14.686560033030101]
Kernel Mean Embedding encodes the cellular landscape of each profiled biological sample.
We train a simple linear classifier and achieve state-of-the-art classification accuracy on 3 flow and mass datasets.
arXiv Detail & Related papers (2022-01-18T21:40:36Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z) - A Systematic Approach to Featurization for Cancer Drug Sensitivity
Predictions with Deep Learning [49.86828302591469]
We train >35,000 neural network models, sweeping over common featurization techniques.
We found the RNA-seq to be highly redundant and informative even with subsets larger than 128 features.
arXiv Detail & Related papers (2020-04-30T20:42:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.