Injecting Hierarchical Biological Priors into Graph Neural Networks for Flow Cytometry Prediction
- URL: http://arxiv.org/abs/2405.18507v4
- Date: Sat, 27 Jul 2024 22:11:35 GMT
- Title: Injecting Hierarchical Biological Priors into Graph Neural Networks for Flow Cytometry Prediction
- Authors: Fatemeh Nassajian Mojarrad, Lorenzo Bini, Thomas Matthes, Stéphane Marchand-Maillet,
- Abstract summary: This work explores injecting hierarchical prior knowledge into graph neural networks (GNNs) for single-cell multi-class classification of cellular data.
We propose our hierarchical plug-in method to be applied to several GNN models, namely, FCHC-GNN, and effectively designed to capture neighborhood information crucial for single-cell FC domain.
- Score: 1.7709249262395883
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the complex landscape of hematologic samples such as peripheral blood or bone marrow derived from flow cytometry (FC) data, cell-level prediction presents profound challenges. This work explores injecting hierarchical prior knowledge into graph neural networks (GNNs) for single-cell multi-class classification of tabular cellular data. By representing the data as graphs and encoding hierarchical relationships between classes, we propose our hierarchical plug-in method to be applied to several GNN models, namely, FCHC-GNN, and effectively designed to capture neighborhood information crucial for single-cell FC domain. Extensive experiments on our cohort of 19 distinct patients, demonstrate that incorporating hierarchical biological constraints boosts performance significantly across multiple metrics compared to baseline GNNs without such priors. The proposed approach highlights the importance of structured inductive biases for gaining improved generalization in complex biological prediction tasks.
Related papers
- FlowCyt: A Comparative Study of Deep Learning Approaches for Multi-Class Classification in Flow Cytometry Benchmarking [1.6712896227173808]
FlowCyt is the first comprehensive benchmark for multi-class single-cell classification in flowencoded data.
The dataset comprises bone marrow samples from 30 patients, with each cell characterized by twelve markers.
arXiv Detail & Related papers (2024-02-28T15:01:59Z) - Graph Neural Network approaches for single-cell data: A recent overview [0.3277163122167433]
Graph Neural Networks (GNN) are reshaping our understanding of biomedicine and diseases by revealing the deep connections among genes and cells.
We highlight the GNN methodologies tailored for single-cell data over the recent years.
This review anticipates a future where GNNs become central to single-cell analysis efforts.
arXiv Detail & Related papers (2023-10-14T11:09:17Z) - A Comparative Study of Graph Neural Networks for Shape Classification in
Neuroimaging [17.775145204666874]
We present an overview of the current state-of-the-art in geometric deep learning for shape classification in neuroimaging.
We find that using FPFH as node features substantially improves GNN performance and generalisation to out-of-distribution data.
We then confirm these results hold for a clinically relevant task, using the classification of Alzheimer's disease.
arXiv Detail & Related papers (2022-10-29T19:03:01Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
We propose a simple yet efficient framework to make the homogeneous GNNs have adequate ability to handle heterogeneous graphs.
Specifically, we propose Relation Embedding based Graph Neural Networks (RE-GNNs), which employ only one parameter per relation to embed the importance of edge type relations and self-loop connections.
arXiv Detail & Related papers (2022-09-23T05:24:18Z) - Learnable Filters for Geometric Scattering Modules [64.03877398967282]
We propose a new graph neural network (GNN) module based on relaxations of recently proposed geometric scattering transforms.
Our learnable geometric scattering (LEGS) module enables adaptive tuning of the wavelets to encourage band-pass features to emerge in learned representations.
arXiv Detail & Related papers (2022-08-15T22:30:07Z) - Generalization Guarantee of Training Graph Convolutional Networks with
Graph Topology Sampling [83.77955213766896]
Graph convolutional networks (GCNs) have recently achieved great empirical success in learning graphstructured data.
To address its scalability issue, graph topology sampling has been proposed to reduce the memory and computational cost of training Gs.
This paper provides first theoretical justification of graph topology sampling in training (up to) three-layer GCNs.
arXiv Detail & Related papers (2022-07-07T21:25:55Z) - Neuroplastic graph attention networks for nuclei segmentation in
histopathology images [17.30043617044508]
We propose a novel architecture for semantic segmentation of cell nuclei.
The architecture is comprised of a novel neuroplastic graph attention network.
In experimental evaluation, our framework outperforms ensembles of state-of-the-art neural networks.
arXiv Detail & Related papers (2022-01-10T22:19:14Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Data-Driven Learning of Geometric Scattering Networks [74.3283600072357]
We propose a new graph neural network (GNN) module based on relaxations of recently proposed geometric scattering transforms.
Our learnable geometric scattering (LEGS) module enables adaptive tuning of the wavelets to encourage band-pass features to emerge in learned representations.
arXiv Detail & Related papers (2020-10-06T01:20:27Z) - EPGAT: Gene Essentiality Prediction With Graph Attention Networks [1.1602089225841632]
We propose EPGAT, an approach for essentiality prediction based on Graph Attention Networks (GATs)
Our model directly learns patterns of gene essentiality from PPI networks, integrating additional evidence from multiomics data encoded as node attributes.
We benchmarked EPGAT for four organisms, including humans, accurately predicting gene essentiality with AUC score ranging from 0.78 to 0.97.
arXiv Detail & Related papers (2020-07-19T13:47:15Z) - AM-GCN: Adaptive Multi-channel Graph Convolutional Networks [85.0332394224503]
We study whether Graph Convolutional Networks (GCNs) can optimally integrate node features and topological structures in a complex graph with rich information.
We propose an adaptive multi-channel graph convolutional networks for semi-supervised classification (AM-GCN)
Our experiments show that AM-GCN extracts the most correlated information from both node features and topological structures substantially.
arXiv Detail & Related papers (2020-07-05T08:16:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.