A Quick Framework for Evaluating Worst Robustness of Complex Networks
- URL: http://arxiv.org/abs/2403.00027v1
- Date: Wed, 28 Feb 2024 16:32:47 GMT
- Title: A Quick Framework for Evaluating Worst Robustness of Complex Networks
- Authors: Wenjun Jiang, Peiyan Li, Tianlong Fan, Ting Li, Chuan-fu Zhang, Tao
Zhang, Zong-fu Luo
- Abstract summary: We introduce the concept of Most Destruction Attack (MDA) based on the idea of knowledge stacking.
MDA is employed to assess the worst robustness of networks, followed by the application of an adapted CNN algorithm for rapid worst robustness prediction.
We highlight the exceptional performance of the adapted CNN algorithm in predicting the worst robustness across diverse network topologies.
- Score: 6.6601150909346165
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Robustness is pivotal for comprehending, designing, optimizing, and
rehabilitating networks, with simulation attacks being the prevailing
evaluation method. Simulation attacks are often time-consuming or even
impractical, however, a more crucial yet persistently overlooked drawback is
that any attack strategy merely provides a potential paradigm of
disintegration. The key concern is: in the worst-case scenario or facing the
most severe attacks, what is the limit of robustness, referred to as ``Worst
Robustness'', for a given system? Understanding a system's worst robustness is
imperative for grasping its reliability limits, accurately evaluating
protective capabilities, and determining associated design and security
maintenance costs. To address these challenges, we introduce the concept of
Most Destruction Attack (MDA) based on the idea of knowledge stacking. MDA is
employed to assess the worst robustness of networks, followed by the
application of an adapted CNN algorithm for rapid worst robustness prediction.
We establish the logical validity of MDA and highlight the exceptional
performance of the adapted CNN algorithm in predicting the worst robustness
across diverse network topologies, encompassing both model and empirical
networks.
Related papers
- Rigorous Probabilistic Guarantees for Robust Counterfactual Explanations [80.86128012438834]
We show for the first time that computing the robustness of counterfactuals with respect to plausible model shifts is NP-complete.
We propose a novel probabilistic approach which is able to provide tight estimates of robustness with strong guarantees.
arXiv Detail & Related papers (2024-07-10T09:13:11Z) - FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuard is the first framework for fault type and zone classification resilient to adversarial attacks.
We propose a low-complexity fault prediction model and an online adversarial training technique to enhance robustness.
Our model outclasses the state-of-the-art for resilient fault prediction benchmarking, with an accuracy of up to 0.958.
arXiv Detail & Related papers (2024-03-26T08:51:23Z) - The Effectiveness of Random Forgetting for Robust Generalization [21.163070161951868]
We introduce a novel learning paradigm called "Forget to Mitigate Overfitting" (FOMO)
FOMO alternates between the forgetting phase, which randomly forgets a subset of weights, and the relearning phase, which emphasizes learning generalizable features.
Our experiments show that FOMO alleviates robust overfitting by significantly reducing the gap between the best and last robust test accuracy.
arXiv Detail & Related papers (2024-02-18T23:14:40Z) - Robust Graph Neural Networks via Unbiased Aggregation [18.681451049083407]
adversarial robustness of Graph Neural Networks (GNNs) has been questioned due to the false sense of security uncovered by strong adaptive attacks.
We provide a unified robust estimation point of view to understand their robustness and limitations.
arXiv Detail & Related papers (2023-11-25T05:34:36Z) - Comprehensive Analysis of Network Robustness Evaluation Based on Convolutional Neural Networks with Spatial Pyramid Pooling [4.366824280429597]
Connectivity robustness, a crucial aspect for understanding, optimizing, and repairing complex networks, has traditionally been evaluated through simulations.
We address these challenges by designing a convolutional neural networks (CNN) model with spatial pyramid pooling networks (SPP-net)
We show that the proposed CNN model consistently achieves accurate evaluations of both attack curves and robustness values across all removal scenarios.
arXiv Detail & Related papers (2023-08-10T09:54:22Z) - Doubly Robust Instance-Reweighted Adversarial Training [107.40683655362285]
We propose a novel doubly-robust instance reweighted adversarial framework.
Our importance weights are obtained by optimizing the KL-divergence regularized loss function.
Our proposed approach outperforms related state-of-the-art baseline methods in terms of average robust performance.
arXiv Detail & Related papers (2023-08-01T06:16:18Z) - Revisiting DeepFool: generalization and improvement [17.714671419826715]
We introduce a new family of adversarial attacks that strike a balance between effectiveness and computational efficiency.
Our proposed attacks are also suitable for evaluating the robustness of large models.
arXiv Detail & Related papers (2023-03-22T11:49:35Z) - A Comprehensive Study on Robustness of Image Classification Models:
Benchmarking and Rethinking [54.89987482509155]
robustness of deep neural networks is usually lacking under adversarial examples, common corruptions, and distribution shifts.
We establish a comprehensive benchmark robustness called textbfARES-Bench on the image classification task.
By designing the training settings accordingly, we achieve the new state-of-the-art adversarial robustness.
arXiv Detail & Related papers (2023-02-28T04:26:20Z) - Understanding and Enhancing Robustness of Concept-based Models [41.20004311158688]
We study robustness of concept-based models to adversarial perturbations.
In this paper, we first propose and analyze different malicious attacks to evaluate the security vulnerability of concept based models.
We then propose a potential general adversarial training-based defense mechanism to increase robustness of these systems to the proposed malicious attacks.
arXiv Detail & Related papers (2022-11-29T10:43:51Z) - Neural Architecture Dilation for Adversarial Robustness [56.18555072877193]
A shortcoming of convolutional neural networks is that they are vulnerable to adversarial attacks.
This paper aims to improve the adversarial robustness of the backbone CNNs that have a satisfactory accuracy.
Under a minimal computational overhead, a dilation architecture is expected to be friendly with the standard performance of the backbone CNN.
arXiv Detail & Related papers (2021-08-16T03:58:00Z) - A Simple Fine-tuning Is All You Need: Towards Robust Deep Learning Via
Adversarial Fine-tuning [90.44219200633286]
We propose a simple yet very effective adversarial fine-tuning approach based on a $textitslow start, fast decay$ learning rate scheduling strategy.
Experimental results show that the proposed adversarial fine-tuning approach outperforms the state-of-the-art methods on CIFAR-10, CIFAR-100 and ImageNet datasets.
arXiv Detail & Related papers (2020-12-25T20:50:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.