論文の概要: Robust Deep Reinforcement Learning Through Adversarial Attacks and Training : A Survey
- arxiv url: http://arxiv.org/abs/2403.00420v2
- Date: Wed, 11 Dec 2024 15:03:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-12 13:59:51.566880
- Title: Robust Deep Reinforcement Learning Through Adversarial Attacks and Training : A Survey
- Title(参考訳): 対人攻撃と訓練による頑健な深層強化学習 : アンケート調査
- Authors: Lucas Schott, Josephine Delas, Hatem Hajri, Elies Gherbi, Reda Yaich, Nora Boulahia-Cuppens, Frederic Cuppens, Sylvain Lamprier,
- Abstract要約: Deep Reinforcement Learning (DRL)は、複雑な環境を横断してシーケンシャルなアクションをとる自律エージェントを訓練するための機械学習のサブフィールドである。
微妙な条件の変化の影響を受けながらも、現実のアプリケーションにおける信頼性への懸念を高めている。
DRLのロバスト性向上手法として, 環境条件の未知の変化と摂動の可能性について考察する。
- 参考スコア(独自算出の注目度): 8.1138182541639
- License:
- Abstract: Deep Reinforcement Learning (DRL) is a subfield of machine learning for training autonomous agents that take sequential actions across complex environments. Despite its significant performance in well-known environments, it remains susceptible to minor condition variations, raising concerns about its reliability in real-world applications. To improve usability, DRL must demonstrate trustworthiness and robustness. A way to improve the robustness of DRL to unknown changes in the environmental conditions and possible perturbations is through Adversarial Training, by training the agent against well-suited adversarial attacks on the observations and the dynamics of the environment. Addressing this critical issue, our work presents an in-depth analysis of contemporary adversarial attack and training methodologies, systematically categorizing them and comparing their objectives and operational mechanisms.
- Abstract(参考訳): Deep Reinforcement Learning (DRL)は、複雑な環境を横断してシーケンシャルなアクションをとる自律エージェントを訓練するための機械学習のサブフィールドである。
良く知られた環境での大幅な性能にもかかわらず、小さな条件の変化の影響を受け、現実世界のアプリケーションにおける信頼性への懸念が高まる。
ユーザビリティを向上させるためには、DRLは信頼性と堅牢性を示す必要がある。
DRLの頑健さを環境条件の未知の変化や摂動の可能性を向上させる手段としては、環境の観察や力学に対する適切な敵攻撃に対してエージェントを訓練する。
本研究は、現代の敵攻撃・訓練手法の詳細な分析を行い、それらを体系的に分類し、目的と運用メカニズムを比較した。
関連論文リスト
- On the Effectiveness of Adversarial Training on Malware Classifiers [14.069462668836328]
対人訓練(AT)は、対人攻撃に対する学習に基づく分類器の強化に広く応用されている。
従来の研究から、頑健性はATのタスク依存性であることが示唆されていた。
我々は、ATとデータ内の特定の要因によって引き起こされる相互に絡み合った役割を探索する必要がある、より複雑な問題であると主張している。
論文 参考訳(メタデータ) (2024-12-24T06:55:53Z) - Mitigating Adversarial Perturbations for Deep Reinforcement Learning via Vector Quantization [18.56608399174564]
優れた強化学習(RL)エージェントは、展開中に敵の摂動に対してレジリエンスを欠いていることが多い。
これは、現実世界にデプロイする前に堅牢なエージェントを構築することの重要性を強調している。
本研究では,RLの入力変換に基づくディフェンスについて検討する。
論文 参考訳(メタデータ) (2024-10-04T12:41:54Z) - Enhancing Autonomous Vehicle Training with Language Model Integration and Critical Scenario Generation [32.02261963851354]
CRITICALは、自動運転車(AV)のトレーニングとテストのための新しいクローズドループフレームワークである。
このフレームワークは、現実世界のトラフィックダイナミクス、運転行動分析、安全性対策、オプションのLarge Language Model (LLM)コンポーネントを統合することで、これを実現する。
論文 参考訳(メタデータ) (2024-04-12T16:13:10Z) - Analyzing Adversarial Inputs in Deep Reinforcement Learning [53.3760591018817]
本稿では, 正当性検証のレンズを用いて, 逆入力の特性を包括的に解析する。
このような摂動に対する感受性に基づいてモデルを分類するために、新しい計量である逆数率(Adversarial Rate)を導入する。
本分析は, 直交入力が所定のDRLシステムの安全性にどのように影響するかを実証的に示す。
論文 参考訳(メタデータ) (2024-02-07T21:58:40Z) - Benchmarking Safe Deep Reinforcement Learning in Aquatic Navigation [78.17108227614928]
本研究では,水文ナビゲーションに着目した安全強化学習のためのベンチマーク環境を提案する。
価値に基づく政策段階の深層強化学習(DRL)について考察する。
また,学習したモデルの振る舞いを所望の特性の集合上で検証する検証戦略を提案する。
論文 参考訳(メタデータ) (2021-12-16T16:53:56Z) - Policy Smoothing for Provably Robust Reinforcement Learning [109.90239627115336]
入力のノルム有界対向摂動に対する強化学習の証明可能な堅牢性について検討する。
我々は、スムーズなポリシーによって得られる全報酬が、入力の摂動のノルムバウンドな逆数の下で一定の閾値以下に収まらないことを保証した証明書を生成する。
論文 参考訳(メタデータ) (2021-06-21T21:42:08Z) - Combining Pessimism with Optimism for Robust and Efficient Model-Based
Deep Reinforcement Learning [56.17667147101263]
実世界のタスクでは、強化学習エージェントはトレーニング中に存在しない状況に遭遇する。
信頼性を確保するため、RLエージェントは最悪の状況に対して堅牢性を示す必要がある。
本稿では,Robust Hallucinated Upper-Confidence RL (RH-UCRL)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-18T16:50:17Z) - Robust Reinforcement Learning on State Observations with Learned Optimal
Adversary [86.0846119254031]
逆摂動状態観測による強化学習の堅牢性について検討した。
固定されたエージェントポリシーでは、摂動状態の観測に最適な敵を見つけることができる。
DRLの設定では、これは以前のものよりもはるかに強い学習された敵対を介してRLエージェントに新しい経験的敵対攻撃につながります。
論文 参考訳(メタデータ) (2021-01-21T05:38:52Z) - Dynamics Generalization via Information Bottleneck in Deep Reinforcement
Learning [90.93035276307239]
本稿では,RLエージェントのより優れた一般化を実現するために,情報理論正則化目標とアニーリングに基づく最適化手法を提案する。
迷路ナビゲーションからロボットタスクまで、さまざまな領域において、我々のアプローチの極端な一般化の利点を実証する。
この研究は、タスク解決のために冗長な情報を徐々に取り除き、RLの一般化を改善するための原則化された方法を提供する。
論文 参考訳(メタデータ) (2020-08-03T02:24:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。