論文の概要: Hierarchical Indexing for Retrieval-Augmented Opinion Summarization
- arxiv url: http://arxiv.org/abs/2403.00435v1
- Date: Fri, 1 Mar 2024 10:38:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-05 17:36:43.420135
- Title: Hierarchical Indexing for Retrieval-Augmented Opinion Summarization
- Title(参考訳): Retrieval-Augmented Opinion Summarizationのための階層的索引付け
- Authors: Tom Hosking, Hao Tang, Mirella Lapata
- Abstract要約: 本稿では,抽出アプローチの帰属性と拡張性と,大規模言語モデル(LLM)の一貫性と拡散性を組み合わせた,教師なし抽象的意見要約手法を提案する。
我々の方法であるHIROは、意味的に整理された離散的な階層を通して文を経路にマッピングするインデックス構造を学習する。
推測時にインデックスを投入し、入力レビューから人気意見を含む文群を識別し、検索する。
- 参考スコア(独自算出の注目度): 68.09977874599925
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a method for unsupervised abstractive opinion summarization, that
combines the attributability and scalability of extractive approaches with the
coherence and fluency of Large Language Models (LLMs). Our method, HIRO, learns
an index structure that maps sentences to a path through a semantically
organized discrete hierarchy. At inference time, we populate the index and use
it to identify and retrieve clusters of sentences containing popular opinions
from input reviews. Then, we use a pretrained LLM to generate a readable
summary that is grounded in these extracted evidential clusters. The modularity
of our approach allows us to evaluate its efficacy at each stage. We show that
HIRO learns an encoding space that is more semantically structured than prior
work, and generates summaries that are more representative of the opinions in
the input reviews. Human evaluation confirms that HIRO generates more coherent,
detailed and accurate summaries that are significantly preferred by annotators
compared to prior work.
- Abstract(参考訳): 本稿では,抽出アプローチの帰属性と拡張性と,Large Language Models (LLMs) のコヒーレンスとフラレンシを組み合わせた,教師なし抽象的意見要約手法を提案する。
提案手法は,意味的に整理された離散階層を通して文を経路にマッピングするインデックス構造を学習する。
推測時には、インデックスを投入して、入力レビューから人気のある意見を含む文のクラスタを識別し、検索します。
そして, 抽出した露光クラスターに接地した読みやすい要約を生成するために, 予め訓練したLCMを用いる。
このアプローチのモジュラリティにより、各段階での有効性を評価することができます。
HIROは,従来の作業よりも意味的に構造化された符号化空間を学習し,入力レビューの意見を代表する要約を生成する。
人間による評価では、HIROは前作に比べてアノテーターに好まれるコヒーレントで詳細で正確な要約を生成する。
関連論文リスト
- SC-Rec: Enhancing Generative Retrieval with Self-Consistent Reranking for Sequential Recommendation [18.519480704213017]
SC-Recは2つの異なる項目の指標と複数のプロンプトテンプレートから多様な嗜好知識を学習する統合レコメンデータシステムである。
SC-Recはシーケンシャルレコメンデーションのための最先端の手法よりも優れており、モデルの様々な出力から補完的な知識を効果的に取り入れている。
論文 参考訳(メタデータ) (2024-08-16T11:59:01Z) - Towards Enhancing Coherence in Extractive Summarization: Dataset and Experiments with LLMs [70.15262704746378]
我々は,5つの公開データセットと自然言語ユーザフィードバックのためのコヒーレントな要約からなる,体系的に作成された人間アノテーションデータセットを提案する。
Falcon-40BとLlama-2-13Bによる予備的な実験では、コヒーレントなサマリーを生成するという点で大幅な性能向上(10%ルージュ-L)が見られた。
論文 参考訳(メタデータ) (2024-07-05T20:25:04Z) - Incremental Extractive Opinion Summarization Using Cover Trees [81.59625423421355]
オンラインマーケットプレースでは、ユーザレビューは時間とともに蓄積され、意見要約を定期的に更新する必要がある。
本研究では,漸進的な環境下での抽出的意見要約の課題について検討する。
本稿では,CentroidRankの要約をインクリメンタルな設定で正確に計算するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-01-16T02:00:17Z) - Enhancing Coherence of Extractive Summarization with Multitask Learning [40.349019691412465]
本研究では,コヒーレンス向上を伴う抽出要約のためのマルチタスク学習アーキテクチャを提案する。
アーキテクチャは、抽出要約器とコヒーレント判別器モジュールとを含む。
実験の結果,提案手法は抽出した要約文の連続文の割合を大幅に改善することがわかった。
論文 参考訳(メタデータ) (2023-05-22T09:20:58Z) - Attributable and Scalable Opinion Summarization [79.87892048285819]
我々は、頻繁なエンコーディングを復号することで抽象的な要約を生成し、同じ頻繁なエンコーディングに割り当てられた文を選択して抽出的な要約を生成する。
本手法は,要約プロセスの一部として要約を生成するために使用される文を同定するため,帰属的手法である。
なぜなら、アグリゲーションはトークンの長いシーケンスではなく、潜在空間で実行されるからである。
論文 参考訳(メタデータ) (2023-05-19T11:30:37Z) - Summarization Programs: Interpretable Abstractive Summarization with
Neural Modular Trees [89.60269205320431]
現在の抽象的要約モデルは明確な解釈可能性の欠如に悩まされるか、あるいは不完全理性を与える。
本稿では,バイナリツリーの(順序付き)リストからなる解釈可能なモジュラーフレームワークであるSummarization Program (SP)を提案する。
要約プログラムは、要約文毎に1つのルートノードを含み、各要約文と文書文を個別のツリーで接続する。
論文 参考訳(メタデータ) (2022-09-21T16:50:22Z) - SNaC: Coherence Error Detection for Narrative Summarization [73.48220043216087]
SNaCは長文の微粒化アノテーションに根ざした物語コヒーレンス評価フレームワークである。
本稿では,生成した物語要約におけるコヒーレンスエラーの分類法を開発し,150冊の本や映画の脚本要約にまたがる6.6k文のスパンレベルアノテーションを収集する。
我々の研究は、最先端の要約モデルによって生成されるコヒーレンスエラーの最初の特徴と、群衆アノテータからコヒーレンス判断を引き出すためのプロトコルを提供する。
論文 参考訳(メタデータ) (2022-05-19T16:01:47Z) - Unsupervised Summarization by Jointly Extracting Sentences and Keywords [12.387378783627762]
RepRankは、抽出多文書要約のための教師なしグラフベースのランキングモデルである。
学習した表現を用いて,有意な文やキーワードを協調的・相互強化プロセスで抽出できることを示す。
複数のベンチマークデータセットによる実験結果は、RepRankがROUGEで最高の、または同等のパフォーマンスを達成したことを示している。
論文 参考訳(メタデータ) (2020-09-16T05:58:00Z) - Discrete Optimization for Unsupervised Sentence Summarization with
Word-Level Extraction [31.648764677078837]
自動要約は、その最も重要な情報を保存しながら、文章の短いバージョンを生成する。
我々はこれら2つの側面を言語モデリングと意味的類似度メトリクスからなる教師なし目的関数でモデル化する。
提案手法は,ROUGEスコアによる教師なし文要約のための新しい最先端技術を実現する。
論文 参考訳(メタデータ) (2020-05-04T19:01:55Z) - Interpretable Multi-Headed Attention for Abstractive Summarization at
Controllable Lengths [14.762731718325002]
MLS(Multi-level Summarizer)は、テキスト文書の要約を制御可能な長さで構築するための教師付き手法である。
MLSはMETEORスコアで14.70%の強いベースラインを上回ります。
論文 参考訳(メタデータ) (2020-02-18T19:40:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。