論文の概要: Attacking Delay-based PUFs with Minimal Adversary Model
- arxiv url: http://arxiv.org/abs/2403.00464v1
- Date: Fri, 1 Mar 2024 11:35:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 06:39:33.687273
- Title: Attacking Delay-based PUFs with Minimal Adversary Model
- Title(参考訳): 最小逆モデルによる遅延型PUFの攻撃
- Authors: Hongming Fei, Owen Millwood, Prosanta Gope, Jack Miskelly, Biplab Sikdar,
- Abstract要約: Physically Unclonable Functions (PUF)は、軽量デバイス認証のための合理化されたソリューションを提供する。
遅延ベースのArbiter PUFは実装の容易さと膨大なチャレンジスペースを持ち、大きな注目を集めている。
モデリングに抵抗するPUFの開発と、それらに対する機械学習攻撃の考案の間には、研究が偏在している。
- 参考スコア(独自算出の注目度): 13.714598539443513
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Physically Unclonable Functions (PUFs) provide a streamlined solution for lightweight device authentication. Delay-based Arbiter PUFs, with their ease of implementation and vast challenge space, have received significant attention; however, they are not immune to modelling attacks that exploit correlations between their inputs and outputs. Research is therefore polarized between developing modelling-resistant PUFs and devising machine learning attacks against them. This dichotomy often results in exaggerated concerns and overconfidence in PUF security, primarily because there lacks a universal tool to gauge a PUF's security. In many scenarios, attacks require additional information, such as PUF type or configuration parameters. Alarmingly, new PUFs are often branded `secure' if they lack a specific attack model upon introduction. To impartially assess the security of delay-based PUFs, we present a generic framework featuring a Mixture-of-PUF-Experts (MoPE) structure for mounting attacks on various PUFs with minimal adversarial knowledge, which provides a way to compare their performance fairly and impartially. We demonstrate the capability of our model to attack different PUF types, including the first successful attack on Heterogeneous Feed-Forward PUFs using only a reasonable amount of challenges and responses. We propose an extension version of our model, a Multi-gate Mixture-of-PUF-Experts (MMoPE) structure, facilitating multi-task learning across diverse PUFs to recognise commonalities across PUF designs. This allows a streamlining of training periods for attacking multiple PUFs simultaneously. We conclude by showcasing the potent performance of MoPE and MMoPE across a spectrum of PUF types, employing simulated, real-world unbiased, and biased data sets for analysis.
- Abstract(参考訳): Physically Unclonable Functions (PUF)は、軽量デバイス認証のための合理化されたソリューションを提供する。
遅延ベースのArbiter PUFは実装が容易で膨大なチャレンジスペースを持つが、入力と出力の相関を利用したモデリング攻撃には無関心である。
したがって、モデリングに抵抗するPUFの開発と、それらに対する機械学習攻撃の考案の間には、研究が偏在している。
この二分法は、PUFのセキュリティを測る普遍的なツールが欠如していることから、PUFのセキュリティに対する過大な懸念と過信をもたらすことが多い。
多くのシナリオでは、攻撃にはPUFタイプや設定パラメータなどの追加情報が必要である。
また、新しいPUFは、導入時に特定のアタックモデルがない場合、しばしば 'Secure' とブランドされる。
遅延に基づくPUFの安全性を公平に評価するために,様々なPUFに対する攻撃を最小限の知識で実装するためのMixture-of-PUF-Experts (MoPE) 構造を特徴とする汎用フレームワークを提案する。
我々は,本モデルが様々なPUFタイプを攻撃できることを示す。例えば,適切な量の課題と応答だけを用いて,異種フィードフォワードPUFに対する最初の攻撃を成功させた。
本モデルの拡張版であるMMOPE(Multi-gate Mixture-of-PUF-Experts)構造を提案する。
これにより、複数のPUFを同時に攻撃するためのトレーニング期間の合理化が可能になる。
本研究は, 実世界の非バイアス, 偏りのあるデータセットを用いて, PUFのスペクトルにまたがって, MoPE と MMoPE の強力な性能を示す。
関連論文リスト
- A lightweight PUF-based authentication protocol [1.9336815376402723]
Physical Unclonable Function (PUF) は、軽量認証プロトコルを実装するハードウェアプリミティブとしての可能性を持っている。
APUFはおそらく最も軽量な強力なPUFであり、指数的に多くのチャレンジ-レスポンスペア(CRP)を生成することができる。
本稿では,PUF とプロトコルの共設計を提案し,PUF は APUF と 0 トランジスタインタフェースで構成され,PUF に供給される真のチャレンジビットを難読化する。
論文 参考訳(メタデータ) (2024-05-21T18:32:13Z) - Designing a Photonic Physically Unclonable Function Having Resilience to Machine Learning Attacks [2.369276238599885]
機械学習(ML)攻撃の訓練に必要なデータセットを生成するための計算PUFモデルについて述べる。
モデル化されたPUFは均一な白色雑音に類似した分布を生成する。
予備的な解析は、PUFが生成する敵ネットワークに類似したレジリエンスを示すことを示唆している。
論文 参考訳(メタデータ) (2024-04-03T03:58:21Z) - PhenoAuth: A Novel PUF-Phenotype-based Authentication Protocol for IoT Devices [9.608432807038083]
本研究は,PUF Phenotype の概念に基づく完全耐雑音認証プロトコルを提案する。
デバイス間通信に適した設定で、相互認証とフォワードの秘密性を示す。
論文 参考訳(メタデータ) (2024-03-06T06:04:32Z) - Towards Robust Federated Learning via Logits Calibration on Non-IID Data [49.286558007937856]
Federated Learning(FL)は、エッジネットワークにおける分散デバイスの共同モデルトレーニングに基づく、プライバシ保護のための分散管理フレームワークである。
近年の研究では、FLは敵の例に弱いことが示されており、その性能は著しく低下している。
本研究では,対戦型訓練(AT)フレームワークを用いて,対戦型実例(AE)攻撃に対するFLモデルの堅牢性を向上させる。
論文 参考訳(メタデータ) (2024-03-05T09:18:29Z) - Model-Based RL for Mean-Field Games is not Statistically Harder than Single-Agent RL [57.745700271150454]
モデルに基づく関数近似を用いた平均フィールドゲーム(MFG)における強化学習のサンプル複雑性について検討した。
本稿では、モデルクラスの複雑性を特徴付けるためのより効果的な概念である部分モデルベースエルダー次元(P-MBED)を紹介する。
論文 参考訳(メタデータ) (2024-02-08T14:54:47Z) - FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning [98.43475653490219]
フェデレート・ラーニング(Federated Learning, FL)は、毒素による攻撃を受けやすい。
FreqFedは、モデルの更新を周波数領域に変換する新しいアグリゲーションメカニズムである。
FreqFedは, 凝集モデルの有用性に悪影響を及ぼすことなく, 毒性攻撃を効果的に軽減できることを実証した。
論文 参考訳(メタデータ) (2023-12-07T16:56:24Z) - Learning Informative Representation for Fairness-aware Multivariate
Time-series Forecasting: A Group-based Perspective [50.093280002375984]
多変量時系列予測モデル(MTS)では変数間の性能不公平性が広く存在する。
フェアネスを意識したMTS予測のための新しいフレームワークであるFairForを提案する。
論文 参考訳(メタデータ) (2023-01-27T04:54:12Z) - PUF-Phenotype: A Robust and Noise-Resilient Approach to Aid
Intra-Group-based Authentication with DRAM-PUFs Using Machine Learning [10.445311342905118]
機械学習(ML)を用いて,DRAM PUF応答の起源を正確に識別する分類システムを提案する。
特徴抽出のための改良深部畳み込みニューラルネットワーク(CNN)を用いて,最大98%の分類精度を実現した。
論文 参考訳(メタデータ) (2022-07-11T08:13:08Z) - A New Security Boundary of Component Differentially Challenged XOR PUFs
Against Machine Learning Modeling Attacks [0.0]
XOR Arbiter PUF(XOR PUF、XOR PUF)は、Arbiter PUFの安全性を改善するために開発されたPUFである。
近年、強力な機械学習攻撃法が発見され、大規模なXPUFを簡単に破壊することができた。
本稿では,XPUFを攻撃するための2つの最も強力な機械学習手法を,CDC-XPUFの2つの手法のパラメータを微調整することによって適用する。
論文 参考訳(メタデータ) (2022-06-02T21:51:39Z) - UPDeT: Universal Multi-agent Reinforcement Learning via Policy
Decoupling with Transformers [108.92194081987967]
タスクに適合する1つのアーキテクチャを設計し、汎用的なマルチエージェント強化学習パイプラインを最初に試行する。
従来のRNNモデルとは異なり、トランスフォーマーモデルを用いてフレキシブルなポリシーを生成する。
提案方式はUPDeT(Universal Policy Decoupling Transformer)と名付けられ,動作制限を緩和し,マルチエージェントタスクの決定プロセスをより説明しやすいものにする。
論文 参考訳(メタデータ) (2021-01-20T07:24:24Z) - Is Independent Learning All You Need in the StarCraft Multi-Agent
Challenge? [100.48692829396778]
独立PPO (Independent PPO) は独立学習の一種であり、各エージェントはその局所値関数を単純に推定する。
IPPOの強い性能は、ある種の非定常性に対する堅牢性に起因する可能性がある。
論文 参考訳(メタデータ) (2020-11-18T20:29:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。