論文の概要: PhenoAuth: A Novel PUF-Phenotype-based Authentication Protocol for IoT Devices
- arxiv url: http://arxiv.org/abs/2403.03486v1
- Date: Wed, 6 Mar 2024 06:04:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-17 16:51:18.996766
- Title: PhenoAuth: A Novel PUF-Phenotype-based Authentication Protocol for IoT Devices
- Title(参考訳): PhenoAuth: IoTデバイス用の新しいPUF-Phenotypeベースの認証プロトコル
- Authors: Hongming Fei, Owen Millwood, Gope Prosanta, Jack Miskelly, Biplab Sikdar,
- Abstract要約: 本研究は,PUF Phenotype の概念に基づく完全耐雑音認証プロトコルを提案する。
デバイス間通信に適した設定で、相互認証とフォワードの秘密性を示す。
- 参考スコア(独自算出の注目度): 9.608432807038083
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Physical Unclonable Functions (PUFs) have been shown to be a highly promising solution for enabling high security systems tailored for low-power devices. Commonly, PUFs are utilised to generate cryptographic keys on-the-fly, replacing the need to store keys in vulnerable, non-volatile memories. Due to the physical nature of PUFs, environmental variations cause noise, manifesting themselves as errors which are apparent in the initial PUF measurements. This necessitates expensive active error correction techniques which can run counter to the goal of lightweight security. ML-based techniques for authenticating noisy PUF measurements were explored as an alternative to error correction techniques, bringing about the concept of a PUF Phenotype, where PUF identity is considered as a structure agnostic representation of the PUF, with relevant noise encoding. This work proposes a full noise-tolerant authentication protocol based on the PUF Phenotype concept and methodology for an Internet-of-Things (IoT) network, demonstrating mutual authentication and forward secrecy in a setting suitable for device-to-device communication. Upon conducting security and performance analyses, it is evident that our proposed scheme demonstrates resilience against various attacks compared to the currently existing PUF protocols.
- Abstract(参考訳): 物理非閉塞関数(PUF)は、低消費電力デバイスに適した高セキュリティシステムを実現するための、非常に有望なソリューションであることが示されている。
一般的にPUFは暗号鍵をオンザフライで生成するために使用され、キーを脆弱で揮発性のないメモリに格納する必要性を置き換える。
PUFの物理的性質のため、環境変動はノイズを引き起こし、最初のPUF測定で明らかな誤りとして現れる。
これは、軽量セキュリティの目標に対抗できる高価なアクティブエラー補正技術を必要とする。
誤り訂正手法の代替としてMLに基づくPUF計測技術が検討され,PUFの識別をPUFの構造に依存しない表現とみなすPUF Phenotypeの概念がもたらされた。
本研究は、デバイス間通信に適した設定で相互認証と前方機密性を実証し、PUF Phenotypeの概念とIoT(Internet-of-Things)ネットワークの方法論に基づく完全耐雑音認証プロトコルを提案する。
セキュリティおよび性能分析を行った結果,提案手法は既存のPUFプロトコルと比較して,様々な攻撃に対するレジリエンスを示すことが明らかとなった。
関連論文リスト
- Designing a Photonic Physically Unclonable Function Having Resilience to Machine Learning Attacks [2.369276238599885]
機械学習(ML)攻撃の訓練に必要なデータセットを生成するための計算PUFモデルについて述べる。
モデル化されたPUFは均一な白色雑音に類似した分布を生成する。
予備的な解析は、PUFが生成する敵ネットワークに類似したレジリエンスを示すことを示唆している。
論文 参考訳(メタデータ) (2024-04-03T03:58:21Z) - Attacking Delay-based PUFs with Minimal Adversary Model [13.714598539443513]
Physically Unclonable Functions (PUF)は、軽量デバイス認証のための合理化されたソリューションを提供する。
遅延ベースのArbiter PUFは実装の容易さと膨大なチャレンジスペースを持ち、大きな注目を集めている。
モデリングに抵抗するPUFの開発と、それらに対する機械学習攻撃の考案の間には、研究が偏在している。
論文 参考訳(メタデータ) (2024-03-01T11:35:39Z) - Tamper-Evident Pairing [55.2480439325792]
Tamper-Evident Pairing (TEP)はPush-ButtonConfiguration (PBC)標準の改良である。
TEP は Tamper-Evident Announcement (TEA) に依存しており、相手が送信されたメッセージを検出せずに改ざんしたり、メッセージが送信された事実を隠蔽したりすることを保証している。
本稿では,その動作を理解するために必要なすべての情報を含む,TEPプロトコルの概要について概説する。
論文 参考訳(メタデータ) (2023-11-24T18:54:00Z) - A Lightweight and Secure PUF-Based Authentication and Key-exchange Protocol for IoT Devices [0.0]
デバイス認証とキー交換はモノのインターネットにとって大きな課題である。
PUFは、PKIやIBEのような典型的な高度な暗号システムの代わりに、実用的で経済的なセキュリティメカニズムを提供するようだ。
認証を行うために,IoTデバイスがサーバと通信するための連続的なアクティブインターネット接続を必要としないシステムを提案する。
論文 参考訳(メタデータ) (2023-11-07T15:42:14Z) - Ring-A-Bell! How Reliable are Concept Removal Methods for Diffusion Models? [52.238883592674696]
Ring-A-Bellは、T2I拡散モデルのためのモデルに依存しないレッドチームツールである。
これは、不適切なコンテンツの生成に対応する拡散モデルに対する問題的プロンプトを特定する。
この結果から,安全プロンプトベンチマークの操作により,既存の安全メカニズムを回避できると考えられるプロンプトを変換できることが示唆された。
論文 参考訳(メタデータ) (2023-10-16T02:11:20Z) - Federated Conformal Predictors for Distributed Uncertainty
Quantification [83.50609351513886]
コンフォーマル予測は、機械学習において厳密な不確実性定量化を提供するための一般的なパラダイムとして現れつつある。
本稿では,共形予測を連邦学習環境に拡張する。
本稿では、FL設定に適した部分交換可能性の弱い概念を提案し、それをフェデレート・コンフォーマル予測フレームワークの開発に利用する。
論文 参考訳(メタデータ) (2023-05-27T19:57:27Z) - DeFakePro: Decentralized DeepFake Attacks Detection using ENF
Authentication [66.2466055910145]
DeFakeProは、オンラインビデオ会議ツールにおけるコンセンサスメカニズムに基づくDeepfake検出技術である。
ENF信号のゆらぎの類似性は、PoENFアルゴリズムを用いて、会議ツールで放送されたメディアを認証する。
論文 参考訳(メタデータ) (2022-07-22T01:22:11Z) - PUF-Phenotype: A Robust and Noise-Resilient Approach to Aid
Intra-Group-based Authentication with DRAM-PUFs Using Machine Learning [10.445311342905118]
機械学習(ML)を用いて,DRAM PUF応答の起源を正確に識別する分類システムを提案する。
特徴抽出のための改良深部畳み込みニューラルネットワーク(CNN)を用いて,最大98%の分類精度を実現した。
論文 参考訳(メタデータ) (2022-07-11T08:13:08Z) - Quantum Lock: A Provable Quantum Communication Advantage [2.9562795446317964]
本稿では,Hybrid lock PUFs(HLPUFs)と呼ばれる,セキュアなPUFの汎用設計を提案する。
HLPUFは古典的なPUFを使用し、出力を非直交量子状態にエンコードして、基盤となるCPUFの結果を敵から隠蔽する。
HLPUFは,量子状態の非古典的特性を活用することにより,サーバがチャレンジ応答ペアを再利用し,さらなるクライアント認証を可能にすることを示す。
論文 参考訳(メタデータ) (2021-10-18T17:01:46Z) - Quality of Service Guarantees for Physical Unclonable Functions [90.99207266853986]
ノイズの多い物理的非拘束関数(PUF)出力は、信頼性、セキュア、および秘密鍵合意を促進する。
PUF出力の比率を制御し、対象の信頼性レベルを保証できるサービスパラメータの品質を導入する。
論文 参考訳(メタデータ) (2021-07-12T18:26:08Z) - iffDetector: Inference-aware Feature Filtering for Object Detection [70.8678270164057]
Inference-aware Feature Filtering (IFF)モジュールを導入し、現代の検出器と簡単に組み合わせることができる。
IFFは、畳み込み機能を強化するためにハイレベルなセマンティクスを活用することでクローズドループ最適化を行う。
IFFはCNNベースの物体検出器とプラグアンドプレイ方式で融合でき、計算コストのオーバーヘッドは無視できる。
論文 参考訳(メタデータ) (2020-06-23T02:57:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。