論文の概要: Can Transformers Capture Spatial Relations between Objects?
- arxiv url: http://arxiv.org/abs/2403.00729v1
- Date: Fri, 1 Mar 2024 18:25:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-05 16:36:11.797905
- Title: Can Transformers Capture Spatial Relations between Objects?
- Title(参考訳): 変換器は物体間の空間的関係をキャプチャできるか?
- Authors: Chuan Wen, Dinesh Jayaraman, Yang Gao
- Abstract要約: 本研究では,現在のコンピュータビジョンシステムによる空間的関係の認識能力について検討する。
本稿では,この課題に対する変圧器の長距離注意力を利用した新しい手法を提案する。
単純な"RelatiViT"アーキテクチャを特定し、現在のアプローチよりも優れていることを示す。
- 参考スコア(独自算出の注目度): 33.610764438515325
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spatial relationships between objects represent key scene information for
humans to understand and interact with the world. To study the capability of
current computer vision systems to recognize physically grounded spatial
relations, we start by proposing precise relation definitions that permit
consistently annotating a benchmark dataset. Despite the apparent simplicity of
this task relative to others in the recognition literature, we observe that
existing approaches perform poorly on this benchmark. We propose new approaches
exploiting the long-range attention capabilities of transformers for this task,
and evaluating key design principles. We identify a simple "RelatiViT"
architecture and demonstrate that it outperforms all current approaches. To our
knowledge, this is the first method to convincingly outperform naive baselines
on spatial relation prediction in in-the-wild settings. The code and datasets
are available in \url{https://sites.google.com/view/spatial-relation}.
- Abstract(参考訳): オブジェクト間の空間的関係は、人間が世界を理解し、対話するための重要なシーン情報を表す。
物理的に接地した空間関係を認識できる現在のコンピュータビジョンシステムの能力を調べるために、ベンチマークデータセットに一貫した注釈を付与する正確な関係定義を提案することから始める。
認識文献におけるタスクの単純さは明らかでありながら,既存の手法ではこのベンチマークでは性能が低かった。
本稿では,この課題に対するトランスフォーマーの長期的注意力を活用した新しいアプローチを提案し,重要な設計原理を評価する。
単純な"RelatiViT"アーキテクチャを特定し、現在のアプローチよりも優れていることを示す。
本手法は,実環境における空間関係予測におけるナイーブなベースラインを説得する最初の手法である。
コードとデータセットは \url{https://sites.google.com/view/spatial-relation} で利用可能である。
関連論文リスト
- A Modern Take on Visual Relationship Reasoning for Grasp Planning [10.543168383800532]
本稿では,視覚的リレーショナル推論による把握計画を提案する。
D3GDは、97の異なるカテゴリから最大35のオブジェクトを持つビンピックシーンを含む、新しいテストベッドである。
また、新しいエンドツーエンドのトランスフォーマーベースの依存性グラフ生成モデルであるD3Gを提案する。
論文 参考訳(メタデータ) (2024-09-03T16:30:48Z) - Scene-Graph ViT: End-to-End Open-Vocabulary Visual Relationship Detection [14.22646492640906]
オープン語彙の視覚的関係検出のための単純かつ高効率なデコーダレスアーキテクチャを提案する。
我々のモデルはTransformerベースの画像エンコーダで、オブジェクトをトークンとして表現し、それらの関係を暗黙的にモデル化する。
提案手法は,ビジュアルゲノムおよび大語彙GQAベンチマーク上で,リアルタイムな推論速度で,最先端の関係検出性能を実現する。
論文 参考訳(メタデータ) (2024-03-21T10:15:57Z) - Towards a Unified Transformer-based Framework for Scene Graph Generation
and Human-object Interaction Detection [116.21529970404653]
本稿では,Transformerアーキテクチャに基づく一段階統一モデルであるSG2HOI+を紹介する。
本手法では,SGGとHOI検出のタスクをシームレスに統一する2つの対話型階層変換器を用いる。
提案手法は最先端のHOI法と比較して競争性能が向上する。
論文 参考訳(メタデータ) (2023-11-03T07:25:57Z) - Goal-driven Self-Attentive Recurrent Networks for Trajectory Prediction [31.02081143697431]
人間の軌道予測は、自動運転車、社会認識ロボット、およびビデオ監視アプリケーションの主要な構成要素である。
本稿では,過去の観測位置のみに作用する軽量な注意型リカレントバックボーンを提案する。
我々はU-Netアーキテクチャに基づく共通のゴールモジュールを使用し、シーン準拠の目的地を予測するために意味情報を抽出する。
論文 参考訳(メタデータ) (2022-04-25T11:12:37Z) - RelViT: Concept-guided Vision Transformer for Visual Relational
Reasoning [139.0548263507796]
私たちは視覚推論のベースモデルとして視覚変換器(ViT)を使用します。
我々は、ViTの推論能力を改善するために、オブジェクトエンティティとして定義された概念とその関係をよりよく活用する。
HICO と GQA のベンチマークでは,提案モデルである概念誘導型視覚変換器 (略して RelViT ) が従来の手法よりも大幅に優れていたことを示す。
論文 参考訳(メタデータ) (2022-04-24T02:46:43Z) - Scenes and Surroundings: Scene Graph Generation using Relation
Transformer [13.146732454123326]
この研究は、リレーショナルトランスと呼ばれる新しいローカルコンテキスト対応アーキテクチャを提案する。
階層的マルチヘッドアテンションに基づくアプローチは、オブジェクト間のコンテキスト依存を効率的に捕捉し、それらの関係を予測する。
最先端のアプローチと比較して、私たちは全体として、textbf4.85%の改善を達成しました。
論文 参考訳(メタデータ) (2021-07-12T14:22:20Z) - Relation-aware Instance Refinement for Weakly Supervised Visual
Grounding [44.33411132188231]
visual groundingは、ビジュアルオブジェクトとその言語エンティティ間の対応を構築することを目的としている。
本稿では,オブジェクトの細粒化とエンティティ関係モデリングを組み込んだ,新しい弱教師付き学習手法を提案する。
2つの公開ベンチマークの実験は、我々のフレームワークの有効性を実証している。
論文 参考訳(メタデータ) (2021-03-24T05:03:54Z) - SIRI: Spatial Relation Induced Network For Spatial Description
Resolution [64.38872296406211]
言語誘導型ローカライゼーションのための新しい関係誘導型ネットワーク(SIRI)を提案する。
提案手法は,80ピクセルの半径で測定した精度で,最先端手法よりも約24%優れていた。
提案手法は,Touchdownと同じ設定で収集した拡張データセットをうまく一般化する。
論文 参考訳(メタデータ) (2020-10-27T14:04:05Z) - End-to-end Contextual Perception and Prediction with Interaction
Transformer [79.14001602890417]
我々は3次元物体の検出と将来の動きを自動運転の文脈で予測する問題に取り組む。
空間的・時間的依存関係を捉えるために,新しいトランスフォーマーアーキテクチャを用いたリカレントニューラルネットワークを提案する。
私たちのモデルはエンドツーエンドでトレーニングでき、リアルタイムで実行されます。
論文 参考訳(メタデータ) (2020-08-13T14:30:12Z) - Learning Long-term Visual Dynamics with Region Proposal Interaction
Networks [75.06423516419862]
オブジェクト間およびオブジェクト環境間の相互作用を長距離にわたってキャプチャするオブジェクト表現を構築します。
単純だが効果的なオブジェクト表現のおかげで、我々の手法は先行手法よりも大幅に優れている。
論文 参考訳(メタデータ) (2020-08-05T17:48:00Z) - Benchmarking Unsupervised Object Representations for Video Sequences [111.81492107649889]
ViMON, OP3, TBA, SCALORの4つのオブジェクト中心アプローチの知覚能力を比較した。
この結果から,制約のない潜在表現を持つアーキテクチャは,オブジェクト検出やセグメンテーション,トラッキングといった観点から,より強力な表現を学習できる可能性が示唆された。
我々のベンチマークは、より堅牢なオブジェクト中心のビデオ表現を学習するための実りあるガイダンスを提供するかもしれない。
論文 参考訳(メタデータ) (2020-06-12T09:37:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。