An Architecture for Unattended Containerized (Deep) Reinforcement
Learning with Webots
- URL: http://arxiv.org/abs/2403.00765v1
- Date: Tue, 6 Feb 2024 12:08:01 GMT
- Title: An Architecture for Unattended Containerized (Deep) Reinforcement
Learning with Webots
- Authors: Tobias Haubold, Petra Linke
- Abstract summary: Reinforcement learning with agents in a 3D world could still face challenges.
Knowledge required to use a simulation software as well as the utilization of a standalone simulation software in unattended training pipelines.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As data science applications gain adoption across industries, the tooling
landscape matures to facilitate the life cycle of such applications and provide
solutions to the challenges involved to boost the productivity of the people
involved. Reinforcement learning with agents in a 3D world could still face
challenges: the knowledge required to use a simulation software as well as the
utilization of a standalone simulation software in unattended training
pipelines.
In this paper we review tools and approaches to train reinforcement learning
agents for robots in 3D worlds with respect to the robot Robotino and argue
that the separation of the simulation environment for creators of virtual
worlds and the model development environment for data scientists is not a well
covered topic. Often both are the same and data scientists require knowledge of
the simulation software to work directly with their APIs. Moreover, sometimes
creators of virtual worlds and data scientists even work on the same files. We
want to contribute to that topic by describing an approach where data
scientists don't require knowledge about the simulation software. Our approach
uses the standalone simulation software Webots, the Robot Operating System to
communicate with simulated robots as well as the simulation software itself and
container technology to separate the simulation from the model development
environment. We put emphasize on the APIs the data scientists work with and the
use of a standalone simulation software in unattended training pipelines. We
show the parts that are specific to the Robotino and the robot task to learn.
Related papers
- RoboCasa: Large-Scale Simulation of Everyday Tasks for Generalist Robots [25.650235551519952]
We present RoboCasa, a large-scale simulation framework for training generalist robots in everyday environments.
We provide thousands of 3D assets across over 150 object categories and dozens of interactable furniture and appliances.
Our experiments show a clear scaling trend in using synthetically generated robot data for large-scale imitation learning.
arXiv Detail & Related papers (2024-06-04T17:41:31Z) - Learning Interactive Real-World Simulators [96.5991333400566]
We explore the possibility of learning a universal simulator of real-world interaction through generative modeling.
We use the simulator to train both high-level vision-language policies and low-level reinforcement learning policies.
Video captioning models can benefit from training with simulated experience, opening up even wider applications.
arXiv Detail & Related papers (2023-10-09T19:42:22Z) - Real Robot Challenge 2022: Learning Dexterous Manipulation from Offline
Data in the Real World [38.54892412474853]
The Real Robot Challenge 2022 served as a bridge between the reinforcement learning and robotics communities.
We asked the participants to learn two dexterous manipulation tasks involving pushing, grasping, and in-hand orientation from provided real-robot datasets.
An extensive software documentation and an initial stage based on a simulation of the real set-up made the competition particularly accessible.
arXiv Detail & Related papers (2023-08-15T12:40:56Z) - Sim2real Transfer Learning for Point Cloud Segmentation: An Industrial
Application Case on Autonomous Disassembly [55.41644538483948]
We present an industrial application case that uses sim2real transfer learning for point cloud data.
We provide insights on how to generate and process synthetic point cloud data.
A novel patch-based attention network is proposed additionally to tackle this problem.
arXiv Detail & Related papers (2023-01-12T14:00:37Z) - Continual learning autoencoder training for a particle-in-cell
simulation via streaming [52.77024349608834]
upcoming exascale era will provide a new generation of physics simulations with high resolution.
These simulations will have a high resolution, which will impact the training of machine learning models since storing a high amount of simulation data on disk is nearly impossible.
This work presents an approach that trains a neural network concurrently to a running simulation without data on a disk.
arXiv Detail & Related papers (2022-11-09T09:55:14Z) - Simulation-Based Parallel Training [55.41644538483948]
We present our ongoing work to design a training framework that alleviates those bottlenecks.
It generates data in parallel with the training process.
We present a strategy to mitigate this bias with a memory buffer.
arXiv Detail & Related papers (2022-11-08T09:31:25Z) - Robot Learning from Randomized Simulations: A Review [59.992761565399185]
Deep learning has caused a paradigm shift in robotics research, favoring methods that require large amounts of data.
State-of-the-art approaches learn in simulation where data generation is fast as well as inexpensive.
We focus on a technique named 'domain randomization' which is a method for learning from randomized simulations.
arXiv Detail & Related papers (2021-11-01T13:55:41Z) - Reactive Long Horizon Task Execution via Visual Skill and Precondition
Models [59.76233967614774]
We describe an approach for sim-to-real training that can accomplish unseen robotic tasks using models learned in simulation to ground components of a simple task planner.
We show an increase in success rate from 91.6% to 98% in simulation and from 10% to 80% success rate in the real-world as compared with naive baselines.
arXiv Detail & Related papers (2020-11-17T15:24:01Z) - A Framework for Learning Predator-prey Agents from Simulation to Real
World [0.0]
We propose an evolutionary predatorprey robot system which can be generally implemented from simulation to the real world.
Both the predators and prey are co-evolved by NeuroEvolution of Augmenting Topologies (NEAT) to learn the expected behaviours.
For the convenience of users, the source code and videos of the simulated and real world are published on Github.
arXiv Detail & Related papers (2020-10-29T17:33:38Z) - A machine learning environment for evaluating autonomous driving
software [1.6516902135723865]
We present a machine learning environment for detecting autonomous vehicle corner case behavior.
Our environment is based on connecting the CARLA simulation software to machine learning framework and custom AI client software.
Our system can search for corner cases where the vehicle AI is unable to correctly understand the situation.
arXiv Detail & Related papers (2020-03-07T13:05:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.