CFRet-DVQA: Coarse-to-Fine Retrieval and Efficient Tuning for Document
Visual Question Answering
- URL: http://arxiv.org/abs/2403.00816v1
- Date: Mon, 26 Feb 2024 01:17:50 GMT
- Title: CFRet-DVQA: Coarse-to-Fine Retrieval and Efficient Tuning for Document
Visual Question Answering
- Authors: Jinxu Zhang, Yongqi Yu, Yu Zhang
- Abstract summary: Document Visual Question Answering (DVQA) is a task that involves responding to queries based on the content of images.
Existing work is limited to locating information within a single page and does not facilitate cross-page question-and-answer interaction.
We introduce CFRet-DVQA, which focuses on retrieval and efficient tuning to address this critical issue effectively.
- Score: 3.8065968624597324
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Document Visual Question Answering (DVQA) is a task that involves responding
to queries based on the content of images. Existing work is limited to locating
information within a single page and does not facilitate cross-page
question-and-answer interaction. Furthermore, the token length limitation
imposed on inputs to the model may lead to truncation of segments pertinent to
the answer. In this study, we introduce a simple but effective methodology
called CFRet-DVQA, which focuses on retrieval and efficient tuning to address
this critical issue effectively. For that, we initially retrieve multiple
segments from the document that correlate with the question at hand.
Subsequently, we leverage the advanced reasoning abilities of the large
language model (LLM), further augmenting its performance through instruction
tuning. This approach enables the generation of answers that align with the
style of the document labels. The experiments demonstrate that our methodology
achieved state-of-the-art or competitive results with both single-page and
multi-page documents in various fields.
Related papers
- Docopilot: Improving Multimodal Models for Document-Level Understanding [87.60020625241178]
We present a high-quality document-level dataset, Doc-750K, designed to support in-depth understanding of multimodal documents.<n>This dataset includes diverse document structures, extensive cross-page dependencies, and real question-answer pairs derived from the original documents.<n>Building on the dataset, we develop a native multimodal model, Docopilot, which can accurately handle document-level dependencies without relying on RAG.
arXiv Detail & Related papers (2025-07-19T16:03:34Z) - Resource-Friendly Dynamic Enhancement Chain for Multi-Hop Question Answering [21.077964610022313]
This work proposes a novel framework called DEC (Dynamic Enhancement Chain)<n> DEC first decomposes complex questions into logically coherent subquestions to form a hallucination-free reasoning chain.<n>It then iteratively refines these subquestions through context-aware rewriting to generate effective query formulations.
arXiv Detail & Related papers (2025-06-21T11:55:27Z) - Doc-CoB: Enhancing Multi-Modal Document Understanding with Visual Chain-of-Boxes Reasoning [12.17399365931]
Existing one-pass MLLMs process entire document images without considering query relevance.<n>Inspired by the human coarse-to-fine reading pattern, we introduce Doc-CoB, a simple-yet-effective mechanism that integrates human-style visual reasoning into MLLM.<n>Our method allows the model to autonomously select the set of regions most relevant to the query, and then focus attention on them for further understanding.
arXiv Detail & Related papers (2025-05-24T08:53:05Z) - M-DocSum: Do LVLMs Genuinely Comprehend Interleaved Image-Text in Document Summarization? [49.53982792497275]
We investigate whether Large Vision-Language Models (LVLMs) genuinely comprehend interleaved image-text in the document.
Existing document understanding benchmarks often assess LVLMs using question-answer formats.
We introduce a novel and challenging Multimodal Document Summarization Benchmark (M-DocSum-Bench)
M-DocSum-Bench comprises 500 high-quality arXiv papers, along with interleaved multimodal summaries aligned with human preferences.
arXiv Detail & Related papers (2025-03-27T07:28:32Z) - Towards Text-Image Interleaved Retrieval [49.96332254241075]
We introduce the text-image interleaved retrieval (TIIR) task, where the query and document are interleaved text-image sequences.
We construct a TIIR benchmark based on naturally interleaved wikiHow tutorials, where a specific pipeline is designed to generate interleaved queries.
We propose a novel Matryoshka Multimodal Embedder (MME), which compresses the number of visual tokens at different granularity.
arXiv Detail & Related papers (2025-02-18T12:00:47Z) - Web-Scale Visual Entity Recognition: An LLM-Driven Data Approach [56.55633052479446]
Web-scale visual entity recognition presents significant challenges due to the lack of clean, large-scale training data.
We propose a novel methodology to curate such a dataset, leveraging a multimodal large language model (LLM) for label verification, metadata generation, and rationale explanation.
Experiments demonstrate that models trained on this automatically curated data achieve state-of-the-art performance on web-scale visual entity recognition tasks.
arXiv Detail & Related papers (2024-10-31T06:55:24Z) - BRIEF: Bridging Retrieval and Inference for Multi-hop Reasoning via Compression [91.23933111083389]
BRIEF (Bridging Retrieval and Inference through Evidence Fusion) is a lightweight approach that performs query-aware multi-hop reasoning.
Based on our synthetic data built entirely by open-source models, BRIEF generates more concise summaries.
arXiv Detail & Related papers (2024-10-20T04:24:16Z) - What are the Essential Factors in Crafting Effective Long Context Multi-Hop Instruction Datasets? Insights and Best Practices [91.71951459594074]
Long language models (LLMs) with extended context windows have significantly improved tasks such as information extraction, question answering, and complex planning scenarios.
Existing methods typically utilize the Self-Instruct framework to generate instruction tuning data for better long context capability improvement.
We propose the Multi-agent Interactive Multi-hop Generation framework, incorporating a Quality Verification Agent, a Single-hop Question Generation Agent, a Multiple Question Sampling Strategy, and a Multi-hop Question Merger Agent.
Our findings show that our synthetic high-quality long-context instruction data significantly enhances model performance, even surpassing models trained on larger amounts of human
arXiv Detail & Related papers (2024-09-03T13:30:00Z) - Attribute or Abstain: Large Language Models as Long Document Assistants [58.32043134560244]
LLMs can help humans working with long documents, but are known to hallucinate.
Existing approaches to attribution have only been evaluated in RAG settings, where the initial retrieval confounds LLM performance.
This is crucially different from the long document setting, where retrieval is not needed, but could help.
We present LAB, a benchmark of 6 diverse long document tasks with attribution, and experiments with different approaches to attribution on 5 LLMs of different sizes.
arXiv Detail & Related papers (2024-07-10T16:16:02Z) - R4: Reinforced Retriever-Reorder-Responder for Retrieval-Augmented Large Language Models [32.598670876662375]
Retrieval-augmented large language models (LLMs) leverage relevant content retrieved by information retrieval systems to generate correct responses.
Existing retriever-responder methods typically append relevant documents to the prompt of LLMs to perform text generation tasks.
We propose a new pipeline named "Reinforced Retriever-Reorder-Responder" to learn document orderings for retrieval-augmented LLMs.
arXiv Detail & Related papers (2024-05-04T12:59:10Z) - EXMODD: An EXplanatory Multimodal Open-Domain Dialogue dataset [20.445453185198186]
We propose a Multimodal Data Construction Framework (MDCF) to alleviate the significant human and resource expenditure in data collection.
MDCF automatically provides explanation for a given image and its corresponding dialogue, which can provide a certain degree of interpretability.
Experiments indicate a positive correlation between the model's ability to generate accurate understandings and high-quality responses.
arXiv Detail & Related papers (2023-10-17T03:28:29Z) - Retrieval-Generation Synergy Augmented Large Language Models [30.53260173572783]
We propose an iterative retrieval-generation collaborative framework.
We conduct experiments on four question answering datasets, including single-hop QA and multi-hop QA tasks.
arXiv Detail & Related papers (2023-10-08T12:50:57Z) - Diffusion Model is an Effective Planner and Data Synthesizer for
Multi-Task Reinforcement Learning [101.66860222415512]
Multi-Task Diffusion Model (textscMTDiff) is a diffusion-based method that incorporates Transformer backbones and prompt learning for generative planning and data synthesis.
For generative planning, we find textscMTDiff outperforms state-of-the-art algorithms across 50 tasks on Meta-World and 8 maps on Maze2D.
arXiv Detail & Related papers (2023-05-29T05:20:38Z) - Enhancing Multi-modal and Multi-hop Question Answering via Structured
Knowledge and Unified Retrieval-Generation [33.56304858796142]
Multi-modal multi-hop question answering involves answering a question by reasoning over multiple input sources from different modalities.
Existing methods often retrieve evidences separately and then use a language model to generate an answer based on the retrieved evidences.
We propose a Structured Knowledge and Unified Retrieval-Generation (RG) approach to address these issues.
arXiv Detail & Related papers (2022-12-16T18:12:04Z) - Generate rather than Retrieve: Large Language Models are Strong Context
Generators [74.87021992611672]
We present a novel perspective for solving knowledge-intensive tasks by replacing document retrievers with large language model generators.
We call our method generate-then-read (GenRead), which first prompts a large language model to generate contextutal documents based on a given question, and then reads the generated documents to produce the final answer.
arXiv Detail & Related papers (2022-09-21T01:30:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.