Fairness, Integrity, and Privacy in a Scalable Blockchain-based
Federated Learning System
- URL: http://arxiv.org/abs/2111.06290v1
- Date: Thu, 11 Nov 2021 16:08:44 GMT
- Title: Fairness, Integrity, and Privacy in a Scalable Blockchain-based
Federated Learning System
- Authors: Timon R\"uckel and Johannes Sedlmeir and Peter Hofmann
- Abstract summary: Federated machine learning (FL) allows to collectively train models on sensitive data as only the clients' models and not their training data need to be shared.
Despite the attention that research on FL has drawn, the concept still lacks broad adoption in practice.
This paper suggests a FL system that incorporates blockchain technology, local differential privacy, and zero-knowledge proofs.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Federated machine learning (FL) allows to collectively train models on
sensitive data as only the clients' models and not their training data need to
be shared. However, despite the attention that research on FL has drawn, the
concept still lacks broad adoption in practice. One of the key reasons is the
great challenge to implement FL systems that simultaneously achieve fairness,
integrity, and privacy preservation for all participating clients. To
contribute to solving this issue, our paper suggests a FL system that
incorporates blockchain technology, local differential privacy, and
zero-knowledge proofs. Our implementation of a proof-of-concept with multiple
linear regression illustrates that these state-of-the-art technologies can be
combined to a FL system that aligns economic incentives, trust, and
confidentiality requirements in a scalable and transparent system.
Related papers
- Digital Twin-Assisted Federated Learning with Blockchain in Multi-tier Computing Systems [67.14406100332671]
In Industry 4.0 systems, resource-constrained edge devices engage in frequent data interactions.
This paper proposes a digital twin (DT) and federated digital twin (FL) scheme.
The efficacy of our proposed cooperative interference-based FL process has been verified through numerical analysis.
arXiv Detail & Related papers (2024-11-04T17:48:02Z) - Federated Learning in Practice: Reflections and Projections [17.445826363802997]
Federated Learning (FL) is a machine learning technique that enables multiple entities to collaboratively learn a shared model without exchanging their local data.
Production systems from organizations like Google, Apple, and Meta demonstrate the real-world applicability of FL.
We propose a redefined FL framework that prioritizes privacy principles rather than rigid definitions.
arXiv Detail & Related papers (2024-10-11T15:10:38Z) - Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
Decentralized approaches like blockchain offer a compelling solution by implementing a consensus mechanism among multiple entities.
Federated Learning (FL) enables participants to collaboratively train models while safeguarding data privacy.
This paper investigates the synergy between blockchain's security features and FL's privacy-preserving model training capabilities.
arXiv Detail & Related papers (2024-03-28T07:08:26Z) - Enhancing Data Provenance and Model Transparency in Federated Learning
Systems -- A Database Approach [1.2180726230978978]
Federated Learning (FL) presents a promising paradigm for training machine learning models across decentralized edge devices.
Ensuring the integrity and traceability of data across these distributed environments remains a critical challenge.
We propose one of the first approaches to enhance data provenance and model transparency in FL systems.
arXiv Detail & Related papers (2024-03-03T09:08:41Z) - Blockchain-empowered Federated Learning: Benefits, Challenges, and Solutions [31.18229828293164]
Federated learning (FL) is a distributed machine learning approach that protects user data privacy by training models locally on clients and aggregating them on a parameter server.
While effective at preserving privacy, FL systems face limitations such as single points of failure, lack of incentives, and inadequate security.
To address these challenges, blockchain technology is integrated into FL systems to provide stronger security, fairness, and scalability.
arXiv Detail & Related papers (2024-03-01T07:41:05Z) - Defending Against Poisoning Attacks in Federated Learning with
Blockchain [12.840821573271999]
We propose a secure and reliable federated learning system based on blockchain and distributed ledger technology.
Our system incorporates a peer-to-peer voting mechanism and a reward-and-slash mechanism, which are powered by on-chain smart contracts, to detect and deter malicious behaviors.
arXiv Detail & Related papers (2023-07-02T11:23:33Z) - Towards a Secure and Reliable Federated Learning using Blockchain [5.910619900053764]
Federated learning (FL) is a distributed machine learning technique that enables collaborative training in which devices perform learning using a local dataset while preserving their privacy.
Despite advantages, FL still suffers from several challenges related to reliability, tractability, and anonymity.
We propose a secure and trustworthy blockchain framework (SRB-FL) tailored to FL.
arXiv Detail & Related papers (2022-01-27T04:09:53Z) - Federated Robustness Propagation: Sharing Adversarial Robustness in
Federated Learning [98.05061014090913]
Federated learning (FL) emerges as a popular distributed learning schema that learns from a set of participating users without requiring raw data to be shared.
adversarial training (AT) provides a sound solution for centralized learning, extending its usage for FL users has imposed significant challenges.
We show that existing FL techniques cannot effectively propagate adversarial robustness among non-iid users.
We propose a simple yet effective propagation approach that transfers robustness through carefully designed batch-normalization statistics.
arXiv Detail & Related papers (2021-06-18T15:52:33Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL):
Performance Analysis and Resource Allocation [119.19061102064497]
We propose a decentralized FL framework by integrating blockchain into FL, namely, blockchain assisted decentralized federated learning (BLADE-FL)
In a round of the proposed BLADE-FL, each client broadcasts its trained model to other clients, competes to generate a block based on the received models, and then aggregates the models from the generated block before its local training of the next round.
We explore the impact of lazy clients on the learning performance of BLADE-FL, and characterize the relationship among the optimal K, the learning parameters, and the proportion of lazy clients.
arXiv Detail & Related papers (2021-01-18T07:19:08Z) - Privacy and Robustness in Federated Learning: Attacks and Defenses [74.62641494122988]
We conduct the first comprehensive survey on this topic.
Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic.
arXiv Detail & Related papers (2020-12-07T12:11:45Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL) with
Lazy Clients [124.48732110742623]
We propose a novel framework by integrating blockchain into Federated Learning (FL)
BLADE-FL has a good performance in terms of privacy preservation, tamper resistance, and effective cooperation of learning.
It gives rise to a new problem of training deficiency, caused by lazy clients who plagiarize others' trained models and add artificial noises to conceal their cheating behaviors.
arXiv Detail & Related papers (2020-12-02T12:18:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.