Motif distribution and function of sparse deep neural networks
- URL: http://arxiv.org/abs/2403.00974v1
- Date: Fri, 1 Mar 2024 20:51:10 GMT
- Title: Motif distribution and function of sparse deep neural networks
- Authors: Olivia T. Zahn, Thomas L. Daniel, J. Nathan Kutz
- Abstract summary: We characterize the connectivity structure of feed-forward, deep neural networks (DNNs) using network motif theory.
We show that enforced sparsity causes DNNs to converge to similar connectivity patterns as characterized by their motif distributions.
- Score: 3.538505670919954
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We characterize the connectivity structure of feed-forward, deep neural
networks (DNNs) using network motif theory. To address whether a particular
motif distribution is characteristic of the training task, or function of the
DNN, we compare the connectivity structure of 350 DNNs trained to simulate a
bio-mechanical flight control system with different randomly initialized
parameters. We develop and implement algorithms for counting second- and
third-order motifs and calculate their significance using their Z-score. The
DNNs are trained to solve the inverse problem of the flight dynamics model in
Bustamante, et al. (2022) (i.e., predict the controls necessary for controlled
flight from the initial and final state-space inputs) and are sparsified
through an iterative pruning and retraining algorithm Zahn, et al. (2022). We
show that, despite random initialization of network parameters, enforced
sparsity causes DNNs to converge to similar connectivity patterns as
characterized by their motif distributions. The results suggest how neural
network function can be encoded in motif distributions, suggesting a variety of
experiments for informing function and control.
Related papers
- Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
We present a new class of equivariant neural networks, dubbed Lattice-Equivariant Neural Networks (LENNs)
Our approach develops within a recently introduced framework aimed at learning neural network-based surrogate models Lattice Boltzmann collision operators.
Our work opens towards practical utilization of machine learning-augmented Lattice Boltzmann CFD in real-world simulations.
arXiv Detail & Related papers (2024-05-22T17:23:15Z) - Use of Parallel Explanatory Models to Enhance Transparency of Neural Network Configurations for Cell Degradation Detection [18.214293024118145]
We build a parallel model to illuminate and understand the internal operation of neural networks.
We show how each layer of the RNN transforms the input distributions to increase detection accuracy.
At the same time we also discover a side effect acting to limit the improvement in accuracy.
arXiv Detail & Related papers (2024-04-17T12:22:54Z) - Structured Neural Networks for Density Estimation and Causal Inference [15.63518195860946]
Injecting structure into neural networks enables learning functions that satisfy invariances with respect to subsets of inputs.
We propose the Structured Neural Network (StrNN), which injects structure through masking pathways in a neural network.
arXiv Detail & Related papers (2023-11-03T20:15:05Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - Do deep neural networks have an inbuilt Occam's razor? [1.1470070927586016]
We show that structured data combined with an intrinsic Occam's razor-like inductive bias towards simple functions counteracts the exponential growth of functions with complexity.
This analysis reveals that structured data, combined with an intrinsic Occam's razor-like inductive bias towards (Kolmogorov) simple functions that is strong enough to counteract the exponential growth of functions with complexity, is a key to the success of DNNs.
arXiv Detail & Related papers (2023-04-13T16:58:21Z) - Analyzing Populations of Neural Networks via Dynamical Model Embedding [10.455447557943463]
A core challenge in the interpretation of deep neural networks is identifying commonalities between the underlying algorithms implemented by distinct networks trained for the same task.
Motivated by this problem, we introduce DYNAMO, an algorithm that constructs low-dimensional manifold where each point corresponds to a neural network model, and two points are nearby if the corresponding neural networks enact similar high-level computational processes.
DYNAMO takes as input a collection of pre-trained neural networks and outputs a meta-model that emulates the dynamics of the hidden states as well as the outputs of any model in the collection.
arXiv Detail & Related papers (2023-02-27T19:00:05Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
We construct a dataset of neural network checkpoints and train a generative model on the parameters.
We find that our approach successfully generates parameters for a wide range of loss prompts.
We apply our method to different neural network architectures and tasks in supervised and reinforcement learning.
arXiv Detail & Related papers (2022-09-26T17:59:58Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Learning Autonomy in Management of Wireless Random Networks [102.02142856863563]
This paper presents a machine learning strategy that tackles a distributed optimization task in a wireless network with an arbitrary number of randomly interconnected nodes.
We develop a flexible deep neural network formalism termed distributed message-passing neural network (DMPNN) with forward and backward computations independent of the network topology.
arXiv Detail & Related papers (2021-06-15T09:03:28Z) - Spiking Neural Networks -- Part II: Detecting Spatio-Temporal Patterns [38.518936229794214]
Spiking Neural Networks (SNNs) have the unique ability to detect information in encoded-temporal signals.
We review models and training algorithms for the dominant approach that considers SNNs as a Recurrent Neural Network (RNN)
We describe an alternative approach that relies on probabilistic models for spiking neurons, allowing the derivation of local learning rules via gradient estimates.
arXiv Detail & Related papers (2020-10-27T11:47:42Z) - Graph Neural Networks for Motion Planning [108.51253840181677]
We present two techniques, GNNs over dense fixed graphs for low-dimensional problems and sampling-based GNNs for high-dimensional problems.
We examine the ability of a GNN to tackle planning problems such as identifying critical nodes or learning the sampling distribution in Rapidly-exploring Random Trees (RRT)
Experiments with critical sampling, a pendulum and a six DoF robot arm show GNNs improve on traditional analytic methods as well as learning approaches using fully-connected or convolutional neural networks.
arXiv Detail & Related papers (2020-06-11T08:19:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.