Reservoir Computing Using Measurement-Controlled Quantum Dynamics
- URL: http://arxiv.org/abs/2403.01024v1
- Date: Fri, 1 Mar 2024 22:59:41 GMT
- Title: Reservoir Computing Using Measurement-Controlled Quantum Dynamics
- Authors: A.H.Abbas and Ivan S.Maksymov
- Abstract summary: We introduce a quantum RC system that employs the dynamics of a probed atom in a cavity.
The proposed quantum reservoir can make fast and reliable forecasts using a small number of artificial neurons.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Physical reservoir computing (RC) is a machine learning algorithm that
employs the dynamics of a physical system to forecast highly nonlinear and
chaotic phenomena. In this paper, we introduce a quantum RC system that employs
the dynamics of a probed atom in a cavity. The atom experiences coherent
driving at a particular rate, leading to a measurement-controlled quantum
evolution. The proposed quantum reservoir can make fast and reliable forecasts
using a small number of artificial neurons compared with the traditional RC
algorithm. We theoretically validate the operation of the reservoir,
demonstrating its potential to be used in error-tolerant applications, where
approximate computing approaches may be used to make feasible forecasts in
conditions of limited computational and energy resources.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Calculating the energy profile of an enzymatic reaction on a quantum computer [0.0]
Quantum computing provides a promising avenue toward enabling quantum chemistry calculations.
Recent research efforts are dedicated to developing and scaling algorithms for Noisy Intermediate-Scale Quantum (NISQ) devices.
arXiv Detail & Related papers (2024-08-20T18:00:01Z) - Quantum Next Generation Reservoir Computing: An Efficient Quantum
Algorithm for Forecasting Quantum Dynamics [1.9260081982051918]
We show that NG-RC can accurately predict full many-body quantum dynamics in both integrable and chaotic systems.
We propose an end-to-end quantum algorithm for many-body quantum dynamics forecasting with a quantum computational speedup via the block-encoding technique.
arXiv Detail & Related papers (2023-08-28T00:34:40Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
Quantum many-body problems are central to demystifying some exotic quantum phenomena, e.g., high-temperature superconductors.
The combination of neural networks (NN) for representing quantum states, and the Variational Monte Carlo (VMC) algorithm, has been shown to be a promising method for solving such problems.
We propose a NN architecture called Vector-Quantized Neural Quantum States (VQ-NQS) that utilizes vector-quantization techniques to leverage redundancies in the local-energy calculations of the VMC algorithm.
arXiv Detail & Related papers (2022-12-21T19:00:04Z) - Classical Half-Adder using Trapped-ion Quantum Bits: Towards Energy-efficient Computation [0.43981305860983716]
Reversible computation has been proposed as a future paradigm for energy efficient computation.
We provide a proof-of-principle of classical logical gates running on quantum technologies.
We analyse the energy required to operate the logic gates, both theoretically and experimentally.
arXiv Detail & Related papers (2022-10-19T11:23:18Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Variational Adiabatic Gauge Transformation on real quantum hardware for
effective low-energy Hamiltonians and accurate diagonalization [68.8204255655161]
We introduce the Variational Adiabatic Gauge Transformation (VAGT)
VAGT is a non-perturbative hybrid quantum algorithm that can use nowadays quantum computers to learn the variational parameters of the unitary circuit.
The accuracy of VAGT is tested trough numerical simulations, as well as simulations on Rigetti and IonQ quantum computers.
arXiv Detail & Related papers (2021-11-16T20:50:08Z) - Variational Quantum Simulation of Chemical Dynamics with Quantum
Computers [23.13347792805101]
We present variational simulations of real-space quantum dynamics suitable for implementation in Noisy Intermediate-Scale Quantum (NISQ) devices.
Motivated by the insights that most chemical dynamics occur in the low energy subspace, we propose a subspace expansion method.
arXiv Detail & Related papers (2021-10-12T16:28:52Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - Information Processing Capacity of Spin-Based Quantum Reservoir
Computing Systems [0.0]
Quantum reservoir computing (QRC) with Ising spin networks was introduced as a quantum version of classical reservoir computing.
We characterize the performance of the spin-based QRC model with the Information Processing Capacity (IPC)
This work establishes a clear picture of the computational capabilities of a quantum network of spins for reservoir computing.
arXiv Detail & Related papers (2020-10-13T13:26:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.