論文の概要: Random Walk Diffusion for Efficient Large-Scale Graph Generation
- arxiv url: http://arxiv.org/abs/2408.04461v1
- Date: Thu, 8 Aug 2024 13:42:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-09 15:28:24.616064
- Title: Random Walk Diffusion for Efficient Large-Scale Graph Generation
- Title(参考訳): 高速大規模グラフ生成のためのランダムウォーク拡散
- Authors: Tobias Bernecker, Ghalia Rehawi, Francesco Paolo Casale, Janine Knauer-Arloth, Annalisa Marsico,
- Abstract要約: 本稿では,ARROW-Diff(AutoRegressive RandOm Walk Diffusion)を提案する。
我々は、ARROW-Diffが、生成時間と多重グラフ統計の両方の観点から、他のベースライン手法を超越して、大きなグラフに効率的にスケールできることを実証した。
- 参考スコア(独自算出の注目度): 0.43108040967674194
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Graph generation addresses the problem of generating new graphs that have a data distribution similar to real-world graphs. While previous diffusion-based graph generation methods have shown promising results, they often struggle to scale to large graphs. In this work, we propose ARROW-Diff (AutoRegressive RandOm Walk Diffusion), a novel random walk-based diffusion approach for efficient large-scale graph generation. Our method encompasses two components in an iterative process of random walk sampling and graph pruning. We demonstrate that ARROW-Diff can scale to large graphs efficiently, surpassing other baseline methods in terms of both generation time and multiple graph statistics, reflecting the high quality of the generated graphs.
- Abstract(参考訳): グラフ生成は、現実世界のグラフに似たデータ分布を持つ新しいグラフを生成する問題に対処する。
従来の拡散に基づくグラフ生成手法は有望な結果を示しているが、大きなグラフにスケールするのに苦労することが多い。
本研究では,ARROW-Diff(AutoRegressive RandOm Walk Diffusion)を提案する。
本手法は,ランダムウォークサンプリングとグラフプルーニングの反復的なプロセスにおける2つの成分を含む。
我々は、ARROW-Diffが、生成時間と複数のグラフ統計の両面において、他のベースライン手法を超越して、大きなグラフに効率的にスケールできることを示し、生成したグラフの高品質さを反映している。
関連論文リスト
- InstructG2I: Synthesizing Images from Multimodal Attributed Graphs [50.852150521561676]
InstructG2Iと呼ばれるグラフ文脈条件拡散モデルを提案する。
InstructG2Iはまずグラフ構造とマルチモーダル情報を利用して情報的隣人サンプリングを行う。
Graph-QFormerエンコーダは、グラフノードをグラフプロンプトの補助セットに適応的に符号化し、デノナイジングプロセスを導く。
論文 参考訳(メタデータ) (2024-10-09T17:56:15Z) - Neural Graph Generator: Feature-Conditioned Graph Generation using Latent Diffusion Models [22.794561387716502]
グラフ生成に条件付き潜在拡散モデルを利用する新しい手法であるニューラルグラフ生成器(NGG)を導入する。
NGGは複雑なグラフパターンをモデル化し、グラフ生成プロセスの制御を提供する。
論文 参考訳(メタデータ) (2024-03-03T15:28:47Z) - GraphRCG: Self-Conditioned Graph Generation [78.69810678803248]
本稿では,グラフ分布を明示的にモデル化する自己条件付きグラフ生成フレームワークを提案する。
本フレームワークは, 既存のグラフ生成手法に比べて, 学習データに対するグラフ品質と忠実度において優れた性能を示す。
論文 参考訳(メタデータ) (2024-03-02T02:28:20Z) - Efficient and Degree-Guided Graph Generation via Discrete Diffusion
Modeling [20.618785908770356]
拡散に基づく生成グラフモデルは高品質の小さなグラフを生成するのに有効であることが証明されている。
しかし、グラフ統計を推奨する何千ものノードを含む巨大なグラフを生成するには、よりスケーラブルである必要がある。
本稿では,大きなグラフを持つ生成タスクに対処する新しい拡散型生成グラフモデルであるEDGEを提案する。
論文 参考訳(メタデータ) (2023-05-06T18:32:27Z) - Graph Generation with Diffusion Mixture [57.78958552860948]
グラフの生成は、非ユークリッド構造の複雑な性質を理解する必要がある実世界のタスクにとって大きな課題である。
本稿では,拡散過程の最終グラフ構造を明示的に学習することにより,グラフのトポロジーをモデル化する生成フレームワークを提案する。
論文 参考訳(メタデータ) (2023-02-07T17:07:46Z) - Generative Diffusion Models on Graphs: Methods and Applications [50.44334458963234]
拡散モデルは、新しい生成パラダイムとして、様々な画像生成タスクにおいて顕著な成功を収めた。
グラフ生成は多くの実世界のアプリケーションを持つグラフ上で重要な計算タスクである。
論文 参考訳(メタデータ) (2023-02-06T06:58:17Z) - GraphGDP: Generative Diffusion Processes for Permutation Invariant Graph
Generation [43.196067037856515]
グラフ生成モデルは生物学、化学、社会科学に広く応用されている。
現在の先行自己回帰モデルは、グラフの置換不変性を取り込むことができない。
置換不変グラフ生成のための連続時間生成拡散プロセスを提案する。
論文 参考訳(メタデータ) (2022-12-04T15:12:44Z) - Order Matters: Probabilistic Modeling of Node Sequence for Graph
Generation [18.03898476141173]
グラフ生成モデルはグラフ上の分布を定義する。
グラフ上の正確な結合確率とシーケンシャルプロセスのノード順序を導出する。
我々は,従来の手法のアドホックノード順序を使わずに,この境界を最大化してグラフ生成モデルを訓練する。
論文 参考訳(メタデータ) (2021-06-11T06:37:52Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
本稿では,AGE という逆グラフ埋め込みのための頑健なフレームワークを提案する。
AGEは、暗黙の分布から強化された負のサンプルとして偽の隣接ノードを生成する。
本フレームワークでは,3種類のグラフデータを扱う3つのモデルを提案する。
論文 参考訳(メタデータ) (2021-05-22T07:05:48Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
指数乱グラフ(ERG)の分野における重要な課題は、大きなグラフ上の非自明なERGの適合である。
本稿では,非自明なERGに対する近似フレームワークを提案する。
我々の手法は、数百万のノードからなるスパースグラフにスケーラブルである。
論文 参考訳(メタデータ) (2020-02-14T11:42:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。