Diffusive Decay of Collective Quantum Excitations in Electron Gas
- URL: http://arxiv.org/abs/2403.01099v1
- Date: Sat, 2 Mar 2024 05:32:28 GMT
- Title: Diffusive Decay of Collective Quantum Excitations in Electron Gas
- Authors: M. Akbari-Moghanjoughi
- Abstract summary: Generalized relations for the probability current and energy density distributions is obtained.
Plasmon levels of quasipaticle in a square-well potential are unstable decaying into equilibrium state.
The pronounced energy density valley close to half-space boundary at low level excitations predicts attractive force close to the surface.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work the multistream quasiparticle model of collective electron
excitations is used to study the energy-density distribution of collective
quantum excitations in an interacting electron gas with arbitrary degree of
degeneracy. Generalized relations for the probability current and energy
density distributions is obtained which reveals a new interesting quantum
phenomenon of diffusive decay of pure quasiparticle states at microscopic
level. The effects is studied for various cases of free quasiparticles,
quasiparticle in an infinite square-well potential and half-space collective
excitations. It is shown that plasmon excitations have the intrinsic tendency
to decay into equilibrium state with uniform energy density spacial
distribution. It is found that plasmon levels of quasipaticle in a square-well
potential are unstable decaying into equilibrium state due to the fundamental
property of collective excitations. The decay rates of pure plasmon states are
determined analytically. Moreover, for damped quasiparticle excitations the
non-vanishing probability current divergence leads to imaginary energy density
resulting in damping instability of energy density dynamic. The pronounced
energy density valley close to half-space boundary at low level excitations
predicts attractive force close to the surface. Current research can have
implications with applications in plasmonics and related fields. Current
analysis can be readily generalized to include external potential and magnetic
field effects.
Related papers
- Unveiling the Quantum Toroidal Dipole in Nanosystems: Quantization,
Interaction Energy, and Measurement [44.99833362998488]
We investigate a quantum particle confined to a toroidal surface in the presence of a filiform current along the system's rotational axis.
Our analysis reveals that the interaction between the particle and the current induces a non-zero toroidal dipole in the particle's stationary states.
arXiv Detail & Related papers (2024-01-26T13:31:32Z) - Floquet engineering of many-body states by the ponderomotive potential [1.2691047660244337]
ponderomotive force is an effective static force that a particle feels in an oscillating field.
We show that the ponderomotive potential from the incident light may be used to induce exciton condensates in semiconductors.
arXiv Detail & Related papers (2023-12-08T08:18:14Z) - Non-perturbative mass renormalization effects in non-relativistic
quantum electrodynamics [0.0]
This work lays the foundation to accurately describe ground-state properties in multimode photonic environments.
We show how the multimode photon field influences various ground and excited-state properties of atomic and molecular systems.
arXiv Detail & Related papers (2023-10-04T23:38:13Z) - The strongly driven Fermi polaron [49.81410781350196]
Quasiparticles are emergent excitations of matter that underlie much of our understanding of quantum many-body systems.
We take advantage of the clean setting of homogeneous quantum gases and fast radio-frequency control to manipulate Fermi polarons.
We measure the decay rate and the quasiparticle residue of the driven polaron from the Rabi oscillations between the two internal states.
arXiv Detail & Related papers (2023-08-10T17:59:51Z) - Bosonic Delocalization of Dipolar Moir\'e Excitons [0.0]
tunable moir'e potentials emerge, trapping excitons into periodic arrays.
Recent experiments have demonstrated density-dependent transport properties of moir'e excitons.
We develop a microscopic theory of interacting excitons in external potentials.
arXiv Detail & Related papers (2023-06-01T09:06:33Z) - Vacuum-field-induced state mixing [0.49157446832511503]
We show a surprising decrease of decay rates within a considerable range of atom-nanoparticle separations.
Our work opens new quantum state manipulation possibilities in emitters with closely spaced energy levels.
arXiv Detail & Related papers (2022-12-22T11:14:08Z) - Cavity Induced Collective Behavior in the Polaritonic Ground State [0.0]
We investigate collective phenomena in a system of many particles in a harmonic trap coupled to a homogeneous quantum cavity field.
The cavity field mediates pairwise long-range interactions and enhances the effective mass of the particles.
The light-matter interaction also modifies the photonic properties of the polariton system, as the ground state is populated with bunched photons.
arXiv Detail & Related papers (2022-07-07T17:09:57Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - In-Gap Band Formation in a Periodically Driven Charge Density Wave
Insulator [68.8204255655161]
Periodically driven quantum many-body systems host unconventional behavior not realized at equilibrium.
We investigate such a setup for strongly interacting spinless fermions on a chain, which at zero temperature and strong interactions form a charge density wave insulator.
arXiv Detail & Related papers (2022-05-19T13:28:47Z) - Self-oscillating pump in a topological dissipative atom-cavity system [55.41644538483948]
We report on an emergent mechanism for pumping in a quantum gas coupled to an optical resonator.
Due to dissipation, the cavity field evolves between its two quadratures, each corresponding to a different centrosymmetric crystal configuration.
This self-oscillation results in a time-periodic potential analogous to that describing the transport of electrons in topological tight-binding models.
arXiv Detail & Related papers (2021-12-21T19:57:30Z) - Enhanced decoherence for a neutral particle sliding on a metallic
surface in vacuum [68.8204255655161]
We show that non-contact friction enhances the decoherence of the moving atom.
We suggest that measuring decoherence times through velocity dependence of coherences could indirectly demonstrate the existence of quantum friction.
arXiv Detail & Related papers (2020-11-06T17:34:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.