Non-perturbative mass renormalization effects in non-relativistic
quantum electrodynamics
- URL: http://arxiv.org/abs/2310.03213v1
- Date: Wed, 4 Oct 2023 23:38:13 GMT
- Title: Non-perturbative mass renormalization effects in non-relativistic
quantum electrodynamics
- Authors: Davis M. Welakuh, Vasil Rokaj, Michael Ruggenthaler, Angel Rubio
- Abstract summary: This work lays the foundation to accurately describe ground-state properties in multimode photonic environments.
We show how the multimode photon field influences various ground and excited-state properties of atomic and molecular systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work lays the foundation to accurately describe ground-state properties
in multimode photonic environments and highlights the importance of the mass
renormalization procedure for ab-initio quantum electrodynamics simulations. We
first demonstrate this for free particles, where the energy dispersion is
employed to determine the mass of the particles. We then show how the multimode
photon field influences various ground and excited-state properties of atomic
and molecular systems. For instance, we observe the enhancement of localization
for the atomic system, and the modification of the potential energy surfaces of
the molecular dimer due to photon-mediated long-range interactions. These
phenomena get enhanced under strong light-matter coupling in a cavity
environment and become relevant for the emerging field of polaritonic
chemistry. We conclude by demonstrating how non-trivial ground-state effects
due to the multimode field can be accurately captured by approximations that
are simple and numerically feasible even for realistic systems.
Related papers
- Non-Hermitian Effects in Dicke models [18.25522741939446]
We study the manifestation of non-Hermitian effects in the Dicke model of light-matter interaction.
Our findings deepen the understanding of non-Hermitian physics in light-matter interaction.
arXiv Detail & Related papers (2024-11-13T06:30:10Z) - Dynamical Casimir Effects: The Need for Nonlocality in Time-Varying Dispersive Nanophotonics [0.40964539027092906]
We discuss the role of material nonlocality in Casimir effects in time-varying frequency-dispersive nanophotonic systems.
We show that local models may lead to nonphysical predictions, such as diverging emission rates of entangled polariton pairs.
Our work sheds light on the importance of nonlocal effects in this new frontier of nanophotonics.
arXiv Detail & Related papers (2024-08-28T03:20:35Z) - Directional spontaneous emission in photonic crystal slabs [49.1574468325115]
Spontaneous emission is a fundamental out-of-equilibrium process in which an excited quantum emitter relaxes to the ground state due to quantum fluctuations.
One way to modify these photon-mediated interactions is to alter the dipole radiation patterns of the emitter, e.g., by placing photonic crystals near them.
Our study delves into the interaction between these directional emission patterns and the aforementioned variables, revealing the untapped potential to fine-tune collective quantum optical phenomena.
arXiv Detail & Related papers (2023-12-04T15:35:41Z) - Cavity Induced Collective Behavior in the Polaritonic Ground State [0.0]
We investigate collective phenomena in a system of many particles in a harmonic trap coupled to a homogeneous quantum cavity field.
The cavity field mediates pairwise long-range interactions and enhances the effective mass of the particles.
The light-matter interaction also modifies the photonic properties of the polariton system, as the ground state is populated with bunched photons.
arXiv Detail & Related papers (2022-07-07T17:09:57Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Photon-mediated interactions near a Dirac photonic crystal slab [68.8204255655161]
We develop a theory of dipole radiation near photonic Dirac points in realistic structures.
We find positions where the nature of the collective interactions change from being coherent to dissipative ones.
Our results significantly improve the knowledge of Dirac light-matter interfaces.
arXiv Detail & Related papers (2021-07-01T14:21:49Z) - Quantum electrodynamics in anisotropic and tilted Dirac photonic
lattices [0.0]
We show how isotropic Dirac-photons can lead to non-exponential spontaneous emission as well as dissipation-less long-range emitter interactions.
In particular, we show how by changing the anisotropy of the lattice one can change both the spatial shape of the interactions as well as its coherent/incoherent nature.
arXiv Detail & Related papers (2021-06-20T19:55:30Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Molecular spin qudits for quantum simulation of light-matter
interactions [62.223544431366896]
We show that molecular spin qudits provide an ideal platform to simulate the quantum dynamics of photon fields strongly interacting with matter.
The basic unit of the proposed molecular quantum simulator can be realized by a simple dimer of a spin 1/2 and a spin $S$ transition metal ion, solely controlled by microwave pulses.
arXiv Detail & Related papers (2021-03-17T15:03:12Z) - The Free Electron Gas in Cavity Quantum Electrodynamics [0.0]
We revisit Sommerfeld's theory of the free electron gas in cavity quantum electrodynamics.
We show that the electron-photon ground state is a Fermi liquid which contains virtual photons.
We also show that the cavity field induces plasmon-polariton excitations and modifies the optical and the DC conductivity of the electron gas.
arXiv Detail & Related papers (2020-06-16T15:12:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.