Adaptive Security in 6G for Sustainable Healthcare
- URL: http://arxiv.org/abs/2403.01100v1
- Date: Sat, 2 Mar 2024 05:48:52 GMT
- Title: Adaptive Security in 6G for Sustainable Healthcare
- Authors: Ijaz Ahmad, Ijaz Ahmad, Erkki Harjula,
- Abstract summary: 6G will fulfill the requirements of future digital healthcare systems through emerging decentralized computing and secure communications technologies.
Digital healthcare solutions employ numerous low-power and resource-constrained connected things, such as the Internet of Medical Things (IoMT)
- Score: 1.4747234049753455
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: 6G will fulfill the requirements of future digital healthcare systems through emerging decentralized computing and secure communications technologies. Digital healthcare solutions employ numerous low-power and resource-constrained connected things, such as the Internet of Medical Things (IoMT). However, the current digital healthcare solutions will face two major challenges. First, the proposed solutions are based on the traditional IoT-Cloud model that will experience latency and reliability challenges to meet the expectations and requirements of digital healthcare, while potentially inflicting heavy network load. Second, the existing digital healthcare solutions will face security challenges due to the inherent limitations of IoMT caused by the lack of resources for proper security in those devices. Therefore, in this research, we present a decentralized adaptive security architecture for the successful deployment of digital healthcare. The proposed architecture leverages the edge-cloud continuum to meet the performance, efficiency, and reliability requirements. It can adapt the security solution at run-time to meet the limited capacity of IoMT devices without compromising the security of critical data. Finally, the research outlines comprehensive methodologies for validating the proposed security architecture.
Related papers
- 2FA: Navigating the Challenges and Solutions for Inclusive Access [55.2480439325792]
Two-Factor Authentication (2FA) has emerged as a critical solution to protect online activities.
This paper examines the intricacies of deploying 2FA in a way that is secure and accessible to all users.
An analysis was conducted to examine the implementation and availability of various 2FA methods across popular online platforms.
arXiv Detail & Related papers (2025-02-17T12:23:53Z) - Towards Robust Stability Prediction in Smart Grids: GAN-based Approach under Data Constraints and Adversarial Challenges [53.2306792009435]
We introduce a novel framework to detect instability in smart grids by employing only stable data.
It relies on a Generative Adversarial Network (GAN) where the generator is trained to create instability data that are used along with stable data to train the discriminator.
Our solution, tested on a dataset composed of real-world stable and unstable samples, achieve accuracy up to 97.5% in predicting grid stability and up to 98.9% in detecting adversarial attacks.
arXiv Detail & Related papers (2025-01-27T20:48:25Z) - Open Problems in Machine Unlearning for AI Safety [61.43515658834902]
Machine unlearning -- the ability to selectively forget or suppress specific types of knowledge -- has shown promise for privacy and data removal tasks.
In this paper, we identify key limitations that prevent unlearning from serving as a comprehensive solution for AI safety.
arXiv Detail & Related papers (2025-01-09T03:59:10Z) - Digital Twin for Evaluating Detective Countermeasures in Smart Grid Cybersecurity [0.0]
This study delves into the potential of digital twins, replicating a smart grid's cyber-physical laboratory environment.
We introduce a flexible, comprehensive digital twin model equipped for hardware-in-the-loop evaluations.
arXiv Detail & Related papers (2024-12-05T08:41:08Z) - Securing Legacy Communication Networks via Authenticated Cyclic Redundancy Integrity Check [98.34702864029796]
We propose Authenticated Cyclic Redundancy Integrity Check (ACRIC)
ACRIC preserves backward compatibility without requiring additional hardware and is protocol agnostic.
We show that ACRIC offers robust security with minimal transmission overhead ( 1 ms)
arXiv Detail & Related papers (2024-11-21T18:26:05Z) - An Intelligent Quantum Cyber-Security Framework for Healthcare Data Management [4.828148213747833]
This paper introduces a comprehensive quantum-based framework to overwhelm the potential security and privacy issues for secure healthcare data management.
The proposed framework delivers overall healthcare data management by coupling the advanced and more competent quantum approach with machine learning.
The experimental evaluation and comparison of the proposed IQ-HDM framework with state-of-the-art methods outline a considerable improvement up to 67.6%, in tackling cyber threats related to healthcare data security.
arXiv Detail & Related papers (2024-10-04T08:04:48Z) - Adaptive Lightweight Security for Performance Efficiency in Critical Healthcare Monitoring [1.1874952582465603]
The Internet of Things (IoT) with its diverse technologies has become an integral component of future healthcare systems.
The evolving healthcare paradigm requires adaptive security procedures and technologies that can adapt to the varying resource constraints of IoT devices.
This article brings forth the unique healthcare monitoring requirements and studies the existing encryption-based security approaches to provide the necessary security.
arXiv Detail & Related papers (2024-06-06T06:55:16Z) - The Security and Privacy of Mobile Edge Computing: An Artificial Intelligence Perspective [64.36680481458868]
Mobile Edge Computing (MEC) is a new computing paradigm that enables cloud computing and information technology (IT) services to be delivered at the network's edge.
This paper provides a survey of security and privacy in MEC from the perspective of Artificial Intelligence (AI)
We focus on new security and privacy issues, as well as potential solutions from the viewpoints of AI.
arXiv Detail & Related papers (2024-01-03T07:47:22Z) - Multi-Tier Computing-Enabled Digital Twin in 6G Networks [50.236861239246835]
In Industry 4.0, industries such as manufacturing, automotive, and healthcare are rapidly adopting DT-based development.
The main challenges to date have been the high demands on communication and computing resources, as well as privacy and security concerns.
To achieve low latency and high security services in the emerging DT, multi-tier computing has been proposed by combining edge/fog computing and cloud computing.
arXiv Detail & Related papers (2023-12-28T13:02:53Z) - Challenges of Blockchain Applications in Digital Health: A Systematic
Review [0.0]
This systematic literature review aims to explore the challenges of blockchain applications in digital health.
Key issues identified include regulatory compliance, energy consumption, network effects, data standards, and the accessibility of the technology to stakeholders.
arXiv Detail & Related papers (2023-04-08T20:50:20Z) - Federated Learning and Blockchain-enabled Fog-IoT Platform for Wearables
in Predictive Healthcare [6.045977607688583]
We propose a platform using federated learning and private blockchain technology within a fog-IoT network.
These technologies have privacy-preserving features securing data within the network.
According to experimental results, the introduced implementation can effectively preserve a patient's privacy and a predictive service's integrity.
arXiv Detail & Related papers (2023-01-11T15:16:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.