A Hybrid Model for Traffic Incident Detection based on Generative
Adversarial Networks and Transformer Model
- URL: http://arxiv.org/abs/2403.01147v1
- Date: Sat, 2 Mar 2024 09:28:04 GMT
- Title: A Hybrid Model for Traffic Incident Detection based on Generative
Adversarial Networks and Transformer Model
- Authors: Xinying Lu, Doudou Zhang, Jianli Xiao
- Abstract summary: Traffic incident detection plays an indispensable role in intelligent transportation systems.
Previous research has identified that the effectiveness of detection is significantly influenced by challenges related to acquiring large datasets.
A hybrid model combining transformer and generative adversarial networks (GANs) is proposed to address these challenges.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In addition to enhancing traffic safety and facilitating prompt emergency
response, traffic incident detection plays an indispensable role in intelligent
transportation systems by providing real-time traffic status information. This
enables the realization of intelligent traffic control and management. Previous
research has identified that apart from employing advanced algorithmic models,
the effectiveness of detection is also significantly influenced by challenges
related to acquiring large datasets and addressing dataset imbalances. A hybrid
model combining transformer and generative adversarial networks (GANs) is
proposed to address these challenges. Experiments are conducted on four real
datasets to validate the superiority of the transformer in traffic incident
detection. Additionally, GANs are utilized to expand the dataset and achieve a
balanced ratio of 1:4, 2:3, and 1:1. The proposed model is evaluated against
the baseline model. The results demonstrate that the proposed model enhances
the dataset size, balances the dataset, and improves the performance of traffic
incident detection in various aspects.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - A Simple Background Augmentation Method for Object Detection with Diffusion Model [53.32935683257045]
In computer vision, it is well-known that a lack of data diversity will impair model performance.
We propose a simple yet effective data augmentation approach by leveraging advancements in generative models.
Background augmentation, in particular, significantly improves the models' robustness and generalization capabilities.
arXiv Detail & Related papers (2024-08-01T07:40:00Z) - Enhancing Traffic Sign Recognition with Tailored Data Augmentation: Addressing Class Imbalance and Instance Scarcity [0.0]
This paper tackles critical challenges in traffic sign recognition (TSR), which is essential for road safety.
We introduce tailored data augmentation techniques, including synthetic image generation and geometric transformations.
Our methodology incorporates diverse augmentation processes to accurately simulate real-world conditions, thereby expanding the training data's variety and representativeness.
arXiv Detail & Related papers (2024-06-05T18:45:45Z) - An Approach to Systematic Data Acquisition and Data-Driven Simulation for the Safety Testing of Automated Driving Functions [32.37902846268263]
In R&D areas related to the safety impact of the "open world", there is a significant shortage of real-world data to parameterize and/or validate simulations.
We present an approach to systematically acquire data in public traffic by heterogeneous means, transform it into a unified representation, and use it to automatically parameterize traffic behavior models for use in data-driven virtual validation of automated driving functions.
arXiv Detail & Related papers (2024-05-02T23:24:27Z) - Energy-Guided Data Sampling for Traffic Prediction with Mini Training Datasets [13.065729535009925]
We propose an innovative solution that merges Convolutional Neural Networks (CNNs) with Long Short-Term Memory (LSTM) architecture to enhance the prediction of traffic flow dynamics.
A key revelation of our research is the feasibility of sampling training data for large traffic systems from simulations conducted on smaller traffic systems.
arXiv Detail & Related papers (2024-03-27T15:57:42Z) - CCDSReFormer: Traffic Flow Prediction with a Criss-Crossed Dual-Stream Enhanced Rectified Transformer Model [32.45713037210818]
We introduce Criss-Crossed Dual-Stream Enhanced Rectified Transformer model (CCDSReFormer)
It includes three innovative modules: Enhanced Rectified Spatial Self-attention (ReSSA), Enhanced Rectified Delay Aware Self-attention (ReDASA) and Enhanced Rectified Temporal Self-attention (ReTSA)
These modules aim to lower computational needs via sparse attention, focus on local information for better traffic dynamics understanding, and merge spatial and temporal insights through a unique learning method.
arXiv Detail & Related papers (2024-03-26T14:43:57Z) - BjTT: A Large-scale Multimodal Dataset for Traffic Prediction [49.93028461584377]
Traditional traffic prediction methods rely on historical traffic data to predict traffic trends.
In this work, we explore how generative models combined with text describing the traffic system can be applied for traffic generation.
We propose ChatTraffic, the first diffusion model for text-to-traffic generation.
arXiv Detail & Related papers (2024-03-08T04:19:56Z) - Leveraging the Power of Data Augmentation for Transformer-based Tracking [64.46371987827312]
We propose two data augmentation methods customized for tracking.
First, we optimize existing random cropping via a dynamic search radius mechanism and simulation for boundary samples.
Second, we propose a token-level feature mixing augmentation strategy, which enables the model against challenges like background interference.
arXiv Detail & Related papers (2023-09-15T09:18:54Z) - Reinforcement Learning with Human Feedback for Realistic Traffic
Simulation [53.85002640149283]
Key element of effective simulation is the incorporation of realistic traffic models that align with human knowledge.
This study identifies two main challenges: capturing the nuances of human preferences on realism and the unification of diverse traffic simulation models.
arXiv Detail & Related papers (2023-09-01T19:29:53Z) - Multi-intersection Traffic Optimisation: A Benchmark Dataset and a
Strong Baseline [85.9210953301628]
Control of traffic signals is fundamental and critical to alleviate traffic congestion in urban areas.
Because of the high complexity of modelling the problem, experimental settings of current works are often inconsistent.
We propose a novel and strong baseline model based on deep reinforcement learning with the encoder-decoder structure.
arXiv Detail & Related papers (2021-01-24T03:55:39Z) - Deep convolutional generative adversarial networks for traffic data
imputation encoding time series as images [7.053891669775769]
We have developed a generative adversarial network (GAN) based traffic sensor data imputation framework (TGAN)
In this study, we have developed a novel time-dependent encoding method called the Gramian Angular Summation Field (GASF)
This study shows that the proposed model can significantly improve the traffic data imputation accuracy in terms of Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) compared to state-of-the-art models on the benchmark dataset.
arXiv Detail & Related papers (2020-05-05T19:14:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.