CCDSReFormer: Traffic Flow Prediction with a Criss-Crossed Dual-Stream Enhanced Rectified Transformer Model
- URL: http://arxiv.org/abs/2403.17753v1
- Date: Tue, 26 Mar 2024 14:43:57 GMT
- Title: CCDSReFormer: Traffic Flow Prediction with a Criss-Crossed Dual-Stream Enhanced Rectified Transformer Model
- Authors: Zhiqi Shao, Michael G. H. Bell, Ze Wang, D. Glenn Geers, Xusheng Yao, Junbin Gao,
- Abstract summary: We introduce Criss-Crossed Dual-Stream Enhanced Rectified Transformer model (CCDSReFormer)
It includes three innovative modules: Enhanced Rectified Spatial Self-attention (ReSSA), Enhanced Rectified Delay Aware Self-attention (ReDASA) and Enhanced Rectified Temporal Self-attention (ReTSA)
These modules aim to lower computational needs via sparse attention, focus on local information for better traffic dynamics understanding, and merge spatial and temporal insights through a unique learning method.
- Score: 32.45713037210818
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate, and effective traffic forecasting is vital for smart traffic systems, crucial in urban traffic planning and management. Current Spatio-Temporal Transformer models, despite their prediction capabilities, struggle with balancing computational efficiency and accuracy, favoring global over local information, and handling spatial and temporal data separately, limiting insight into complex interactions. We introduce the Criss-Crossed Dual-Stream Enhanced Rectified Transformer model (CCDSReFormer), which includes three innovative modules: Enhanced Rectified Spatial Self-attention (ReSSA), Enhanced Rectified Delay Aware Self-attention (ReDASA), and Enhanced Rectified Temporal Self-attention (ReTSA). These modules aim to lower computational needs via sparse attention, focus on local information for better traffic dynamics understanding, and merge spatial and temporal insights through a unique learning method. Extensive tests on six real-world datasets highlight CCDSReFormer's superior performance. An ablation study also confirms the significant impact of each component on the model's predictive accuracy, showcasing our model's ability to forecast traffic flow effectively.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - Fusion Matrix Prompt Enhanced Self-Attention Spatial-Temporal Interactive Traffic Forecasting Framework [2.9490249935740573]
We propose a Fusion Matrix Prompt Enhanced Self-Attention Spatial-Temporal Interactive Traffic Forecasting Framework (FMPESTF)
FMPESTF is composed of spatial and temporal modules for down-sampling traffic data.
We introduce attention mechanism in time modeling, and design hierarchical spatial-temporal interactive learning to help the model adapt to various traffic scenarios.
arXiv Detail & Related papers (2024-10-12T03:47:27Z) - Unleashing the Potential of Mamba: Boosting a LiDAR 3D Sparse Detector by Using Cross-Model Knowledge Distillation [22.653014803666668]
We propose a Faster LiDAR 3D object detection framework, called FASD, which implements heterogeneous model distillation by adaptively uniform cross-model voxel features.
We aim to distill the transformer's capacity for high-performance sequence modeling into Mamba models with low FLOPs, achieving a significant improvement in accuracy through knowledge transfer.
We evaluated the framework on datasets and nuScenes, achieving a 4x reduction in resource consumption and a 1-2% performance improvement over the current SoTA methods.
arXiv Detail & Related papers (2024-09-17T09:30:43Z) - Navigating Spatio-Temporal Heterogeneity: A Graph Transformer Approach for Traffic Forecasting [13.309018047313801]
Traffic forecasting has emerged as a crucial research area in the development of smart cities.
Recent advancements in network modeling for most-temporal correlations are starting to see diminishing returns in performance.
To tackle these challenges, we introduce the Spatio-Temporal Graph Transformer (STGormer)
We design two straightforward yet effective spatial encoding methods based on the structure and integrate time position into the vanilla transformer to capture-temporal traffic patterns.
arXiv Detail & Related papers (2024-08-20T13:18:21Z) - ST-Mamba: Spatial-Temporal Selective State Space Model for Traffic Flow Prediction [32.44888387725925]
The proposed ST-Mamba model is first to leverage the power of spatial-temporal learning in traffic flow prediction without using graph modeling.
The proposed ST-Mamba model achieves a 61.11% improvement in computational speed and increases prediction accuracy by 0.67%.
Experiments with real-world traffic datasets demonstrate that the textsfST-Mamba model sets a new benchmark in traffic flow prediction.
arXiv Detail & Related papers (2024-04-20T03:57:57Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
Long-term urban mobility predictions play a crucial role in the effective management of urban facilities and services.
Traditionally, urban mobility data has been structured as videos, treating longitude and latitude as fundamental pixels.
In our research, we introduce a fresh perspective on urban mobility prediction.
Instead of oversimplifying urban mobility data as traditional video data, we regard it as a complex time series.
arXiv Detail & Related papers (2023-12-04T07:39:05Z) - Attention-based Spatial-Temporal Graph Convolutional Recurrent Networks
for Traffic Forecasting [12.568905377581647]
Traffic forecasting is one of the most fundamental problems in transportation science and artificial intelligence.
Existing methods cannot accurately model both long-term and short-term temporal correlations simultaneously.
We propose a novel spatial-temporal neural network framework, which consists of a graph convolutional recurrent module (GCRN) and a global attention module.
arXiv Detail & Related papers (2023-02-25T03:37:00Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
spatial-temporal Graph Neural Network (GNN) models have emerged as one of the most promising methods to solve this problem.
We propose a novel propagation delay-aware dynamic long-range transFormer, namely PDFormer, for accurate traffic flow prediction.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2023-01-19T08:42:40Z) - Towards Long-Term Time-Series Forecasting: Feature, Pattern, and
Distribution [57.71199089609161]
Long-term time-series forecasting (LTTF) has become a pressing demand in many applications, such as wind power supply planning.
Transformer models have been adopted to deliver high prediction capacity because of the high computational self-attention mechanism.
We propose an efficient Transformerbased model, named Conformer, which differentiates itself from existing methods for LTTF in three aspects.
arXiv Detail & Related papers (2023-01-05T13:59:29Z) - StreamYOLO: Real-time Object Detection for Streaming Perception [84.2559631820007]
We endow the models with the capacity of predicting the future, significantly improving the results for streaming perception.
We consider multiple velocities driving scene and propose Velocity-awared streaming AP (VsAP) to jointly evaluate the accuracy.
Our simple method achieves the state-of-the-art performance on Argoverse-HD dataset and improves the sAP and VsAP by 4.7% and 8.2% respectively.
arXiv Detail & Related papers (2022-07-21T12:03:02Z) - Scalable Vehicle Re-Identification via Self-Supervision [66.2562538902156]
Vehicle Re-Identification is one of the key elements in city-scale vehicle analytics systems.
Many state-of-the-art solutions for vehicle re-id mostly focus on improving the accuracy on existing re-id benchmarks and often ignore computational complexity.
We propose a simple yet effective hybrid solution empowered by self-supervised training which only uses a single network during inference time.
arXiv Detail & Related papers (2022-05-16T12:14:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.