論文の概要: STAR: Constraint LoRA with Dynamic Active Learning for Data-Efficient Fine-Tuning of Large Language Models
- arxiv url: http://arxiv.org/abs/2403.01165v2
- Date: Thu, 6 Jun 2024 07:31:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 21:02:35.727401
- Title: STAR: Constraint LoRA with Dynamic Active Learning for Data-Efficient Fine-Tuning of Large Language Models
- Title(参考訳): STAR:大規模言語モデルのデータ効率向上のための動的アクティブラーニングによる制約LoRA
- Authors: Linhai Zhang, Jialong Wu, Deyu Zhou, Guoqiang Xu,
- Abstract要約: 我々は不確実性に基づくアクティブラーニングとLoRAを統合する新しい手法を提案する。
不確実性ギャップについて、ベースモデルの不確実性とフルモデルの不確実性を組み合わせた動的不確実性測定を導入する。
モデルのキャリブレーションが不十分な場合、LoRAトレーニング中に正規化手法を導入し、モデルが過度に信頼されないようにする。
- 参考スコア(独自算出の注目度): 21.929902181609936
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Though Large Language Models (LLMs) have demonstrated the powerful capabilities of few-shot learning through prompting methods, supervised training is still necessary for complex reasoning tasks. Because of their extensive parameters and memory consumption, both Parameter-Efficient Fine-Tuning (PEFT) methods and Memory-Efficient Fine-Tuning methods have been proposed for LLMs. Nevertheless, the issue of large annotated data consumption, the aim of Data-Efficient Fine-Tuning, remains unexplored. One obvious way is to combine the PEFT method with active learning. However, the experimental results show that such a combination is not trivial and yields inferior results. Through probe experiments, such observation might be explained by two main reasons: uncertainty gap and poor model calibration. Therefore, in this paper, we propose a novel approach to effectively integrate uncertainty-based active learning and LoRA. Specifically, for the uncertainty gap, we introduce a dynamic uncertainty measurement that combines the uncertainty of the base model and the uncertainty of the full model during the iteration of active learning. For poor model calibration, we incorporate the regularization method during LoRA training to keep the model from being over-confident, and the Monte-Carlo dropout mechanism is employed to enhance the uncertainty estimation. Experimental results show that the proposed approach outperforms existing baseline models on three complex reasoning tasks.
- Abstract(参考訳): LLM(Large Language Models)は、プロンプトメソッドによる数発学習の強力な能力を示しているが、複雑な推論タスクには教師付きトレーニングが必要である。
広いパラメータとメモリ消費のため、パラメータ効率の良いファインチューニング(PEFT)法とメモリ効率の良いファインチューニング法の両方がLLM向けに提案されている。
それでも、データ効率の良いファインチューニングの目的である大量のアノテートデータ消費の問題は未解決のままである。
1つの明らかな方法は、PEFT法とアクティブラーニングを組み合わせることである。
しかし, 実験結果から, このような組み合わせは自明なものではなく, 劣等な結果をもたらすことが示された。
プローブ実験を通じて、そのような観測は、不確実性ギャップとモデルのキャリブレーションの2つの主な理由によって説明できる。
そこで本稿では,不確実性に基づくアクティブラーニングとLoRAを効果的に統合する手法を提案する。
特に、不確実性ギャップについて、アクティブラーニングの繰り返しにおけるベースモデルの不確実性とフルモデルの不確実性を組み合わせた動的不確実性測定を導入する。
モデルキャリブレーションの貧弱化のために,LoRAトレーニング中にモデルが過信にならないように正規化手法を導入し,不確実性評価を高めるためにモンテカルロ・ドロップアウト機構を採用した。
実験の結果,提案手法は3つの複雑な推論タスクにおいて,既存のベースラインモデルよりも優れていることがわかった。
関連論文リスト
- Enhancing Training Data Attribution for Large Language Models with Fitting Error Consideration [74.09687562334682]
Debias and Denoise Attribution (DDA) と呼ばれる新しいトレーニングデータ属性法を導入する。
提案手法は既存のアプローチよりも優れており,平均91.64%のAUCを実現している。
DDAは、様々なソースとLLaMA2、QWEN2、Mistralのような異なるスケールのモデルに対して、強力な汎用性とスケーラビリティを示す。
論文 参考訳(メタデータ) (2024-10-02T07:14:26Z) - Unlearning with Control: Assessing Real-world Utility for Large Language Model Unlearning [97.2995389188179]
最近の研究は、勾配上昇(GA)を通した大規模言語モデル(LLM)の未学習にアプローチし始めている。
その単純さと効率性にもかかわらず、我々はGAベースの手法が過剰な未学習の傾向に直面することを示唆している。
過剰な未学習の度合いを制御できるいくつかの制御手法を提案する。
論文 参考訳(メタデータ) (2024-06-13T14:41:00Z) - Querying Easily Flip-flopped Samples for Deep Active Learning [63.62397322172216]
アクティブラーニング(英: Active Learning)は、ラベルのないデータを戦略的に選択してクエリすることで、モデルの性能を向上させることを目的とした機械学習パラダイムである。
効果的な選択戦略の1つはモデルの予測の不確実性に基づくもので、サンプルがどの程度情報的であるかの尺度として解釈できる。
本稿では,予測されたラベルの不一致の最小確率として,最小不一致距離(LDM)を提案する。
論文 参考訳(メタデータ) (2024-01-18T08:12:23Z) - Learning Objective-Specific Active Learning Strategies with Attentive
Neural Processes [72.75421975804132]
学び アクティブラーニング(LAL)は、アクティブラーニング戦略自体を学ぶことを提案し、与えられた設定に適応できるようにする。
能動学習問題の対称性と独立性を利用した新しい分類法を提案する。
私たちのアプローチは、筋電図から学ぶことに基づいており、モデルに標準ではない目的に適応する能力を与えます。
論文 参考訳(メタデータ) (2023-09-11T14:16:37Z) - Measuring and Modeling Uncertainty Degree for Monocular Depth Estimation [50.920911532133154]
単分子深度推定モデル(MDE)の本質的な不適切さと順序感性は、不確かさの程度を推定する上で大きな課題となる。
本稿では,MDEモデルの不確かさを固有確率分布の観点からモデル化する。
新たなトレーニング正規化用語を導入することで、驚くほど単純な構成で、余分なモジュールや複数の推論を必要とせずに、最先端の信頼性で不確実性を推定できる。
論文 参考訳(メタデータ) (2023-07-19T12:11:15Z) - Discriminator-Guided Model-Based Offline Imitation Learning [11.856949845359853]
オフライン模倣学習(英: offline mimicion learning, IL)は、報酬ラベルなしで専門家によるデモンストレーションから意思決定問題を解決する強力な手法である。
本稿では,モデルロールアウトデータの動的正当性と準最適性を同時に識別する識別器を導入する,識別器誘導型モデルベースオフライン学習(DMIL)フレームワークを提案する。
実験結果から,DMILとその拡張は,小規模なデータセット下での最先端のオフラインIL法と比較して,優れた性能とロバスト性が得られることが示された。
論文 参考訳(メタデータ) (2022-07-01T07:28:18Z) - Deep Active Learning with Noise Stability [24.54974925491753]
ラベルのないデータの不確実性推定は、アクティブな学習に不可欠である。
本稿では,雑音の安定性を利用して不確実性を推定する新しいアルゴリズムを提案する。
本手法はコンピュータビジョン,自然言語処理,構造データ解析など,様々なタスクに適用可能である。
論文 参考訳(メタデータ) (2022-05-26T13:21:01Z) - Sample Efficient Reinforcement Learning via Model-Ensemble Exploration
and Exploitation [3.728946517493471]
MEEEは楽観的な探索と重み付けによる搾取からなるモデルアンサンブル法である。
我々の手法は、特にサンプル複雑性において、他のモデルフリーおよびモデルベース最先端手法よりも優れています。
論文 参考訳(メタデータ) (2021-07-05T07:18:20Z) - MixKD: Towards Efficient Distillation of Large-scale Language Models [129.73786264834894]
データに依存しない蒸留フレームワークであるMixKDを提案する。
妥当な条件下では、MixKDは誤差と経験的誤差の間のギャップを小さくする。
限定的なデータ設定とアブレーションによる実験は、提案手法の利点をさらに証明している。
論文 参考訳(メタデータ) (2020-11-01T18:47:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。