DMoERM: Recipes of Mixture-of-Experts for Effective Reward Modeling
- URL: http://arxiv.org/abs/2403.01197v2
- Date: Sun, 28 Apr 2024 03:24:41 GMT
- Title: DMoERM: Recipes of Mixture-of-Experts for Effective Reward Modeling
- Authors: Shanghaoran Quan,
- Abstract summary: We introduce the idea of Mixture-of-Experts (MoE) into the field of reward model (RM) training.
We decompose the specific task into multiple capability dimensions and individually fine-tune a LoRA expert on each one.
Our model attains superior consistency with human preference and outstrips advanced generative approaches.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The performance of the reward model (RM) is a critical factor in improving the effectiveness of the large language model (LLM) during alignment fine-tuning. There remain two challenges in RM training: 1) training the same RM using various categories of data may cause its generalization performance to suffer from multi-task disturbance, and 2) the human annotation consistency rate is generally only $60\%$ to $75\%$, causing training data to contain a lot of noise. To tackle these two challenges, we introduced the idea of Mixture-of-Experts (MoE) into the field of RM for the first time. We propose the Double-Layer MoE RM (DMoERM). The outer layer MoE is a sparse model. After classifying an input into task categories, we route it to the corresponding inner layer task-specific model. The inner layer MoE is a dense model. We decompose the specific task into multiple capability dimensions and individually fine-tune a LoRA expert on each one. Their outputs are then synthesized by an MLP to compute the final rewards. To minimize costs, we call a public LLM API to obtain the capability preference labels. The validation on manually labeled datasets confirms that our model attains superior consistency with human preference and outstrips advanced generative approaches. Meanwhile, through BoN sampling and RL experiments, we demonstrate that our model outperforms state-of-the-art ensemble methods of RM and mitigates the overoptimization problem. Our code and dataset are available at: https://github.com/quanshr/DMoERM-v1.
Related papers
- Drama: Mamba-Enabled Model-Based Reinforcement Learning Is Sample and Parameter Efficient [9.519619751861333]
We propose a state space model (SSM) based world model based on Mamba.
It achieves $O(n)$ memory and computational complexity while effectively capturing long-term dependencies.
This model is accessible and can be trained on an off-the-shelf laptop.
arXiv Detail & Related papers (2024-10-11T15:10:40Z) - LASeR: Learning to Adaptively Select Reward Models with Multi-Armed Bandits [56.93583799109029]
We introduce LASeR (Learning to Adaptively Select Rewards), which iteratively trains LLMs using multiple Reward Models (RMs)
Our results demonstrate that LASeR can boost iterative LLM optimization by optimizing for multiple RMs.
We also verify the presence of conflicting preferences from multiple RMs that can be mitigated using LASeR.
arXiv Detail & Related papers (2024-10-02T16:46:38Z) - Layerwise Recurrent Router for Mixture-of-Experts [42.36093735411238]
Mixture-of-Experts (MoE) architecture stands out for its ability to scale model size without significantly increasing training costs.
Current MoE models often display parameter inefficiency.
We introduce the Layerwise Recurrent Router for Mixture-of-Experts (RMoE)
arXiv Detail & Related papers (2024-08-13T10:25:13Z) - Interpretable Preferences via Multi-Objective Reward Modeling and Mixture-of-Experts [23.27203570485055]
Reinforcement learning from human feedback (RLHF) has emerged as the primary method for aligning large language models with human preferences.
We propose a two-stage approach to train a reward model (RM) with multi-dimensional absolute-rating data.
We efficiently trained an ArmoRM with Llama-3 8B and a gating network consisting of a shallow on top of the ArmoRM.
arXiv Detail & Related papers (2024-06-18T17:58:28Z) - Dynamic Data Mixing Maximizes Instruction Tuning for Mixture-of-Experts [20.202031878825153]
We propose a novel dynamic data mixture for MoE instruction tuning.
Inspired by MoE's token routing preference, we build dataset-level representations and then capture the subtle differences among datasets.
Results on two MoE models demonstrate the effectiveness of our approach on both downstream knowledge & reasoning tasks and open-ended queries.
arXiv Detail & Related papers (2024-06-17T06:47:03Z) - EMR-Merging: Tuning-Free High-Performance Model Merging [55.03509900949149]
We show that Elect, Mask & Rescale-Merging (EMR-Merging) shows outstanding performance compared to existing merging methods.
EMR-Merging is tuning-free, thus requiring no data availability or any additional training while showing impressive performance.
arXiv Detail & Related papers (2024-05-23T05:25:45Z) - Task-customized Masked AutoEncoder via Mixture of Cluster-conditional
Experts [104.9871176044644]
Masked Autoencoder(MAE) is a prevailing self-supervised learning method that achieves promising results in model pre-training.
We propose a novel MAE-based pre-training paradigm, Mixture of Cluster-conditional Experts (MoCE)
MoCE trains each expert only with semantically relevant images by using cluster-conditional gates.
arXiv Detail & Related papers (2024-02-08T03:46:32Z) - LLaVA-MoLE: Sparse Mixture of LoRA Experts for Mitigating Data Conflicts
in Instruction Finetuning MLLMs [29.96139552754377]
We propose an efficient Mixture of Experts (MoE) design for instruction finetuning MLLMs.
Extensive experiments proved that LLaVA-MoLE effectively mitigates the data conflict issue when mixing multiple distinct instruction datasets.
LLaVA-MoLE can even outperform the plain-LoRA baseline trained with twice the samples.
arXiv Detail & Related papers (2024-01-29T13:48:36Z) - Routing to the Expert: Efficient Reward-guided Ensemble of Large
Language Models [69.51130760097818]
We propose Zooter, a reward-guided routing method distilling rewards on training queries to train a routing function.
We evaluate Zooter on a comprehensive benchmark collection with 26 subsets on different domains and tasks.
arXiv Detail & Related papers (2023-11-15T04:40:43Z) - Confronting Reward Model Overoptimization with Constrained RLHF [114.71591361764547]
We show that correlation between component RMs has a significant effect on the locations of these points.
Our method addresses the problem of weighting component RMs by learning dynamic weights, naturally expressed by Lagrange multipliers.
arXiv Detail & Related papers (2023-10-06T16:59:17Z) - The Trickle-down Impact of Reward (In-)consistency on RLHF [71.37987812944971]
We show that reward inconsistency exhibits a trickle-down effect on the downstream Reinforcement Learning from Human Feedback process.
We propose Contrast Instructions -- a benchmarking strategy for the consistency of RM.
We show that RLHF models trained with a more consistent RM yield more useful responses.
arXiv Detail & Related papers (2023-09-28T04:05:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.