論文の概要: High-coherence superconducting qubits made using industry-standard, advanced semiconductor manufacturing
- arxiv url: http://arxiv.org/abs/2403.01312v2
- Date: Mon, 22 Apr 2024 07:50:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-23 23:24:19.098195
- Title: High-coherence superconducting qubits made using industry-standard, advanced semiconductor manufacturing
- Title(参考訳): 産業標準・先進半導体製造を用いた高コヒーレンス超伝導量子ビット
- Authors: Jacques Van Damme, Shana Massar, Rohith Acharya, Tsvetan Ivanov, Daniel Perez Lozano, Yann Canvel, Mael Demarets, Diziana Vangoidsenhoven, Yannick Hermans, Ju-Geng Lai, Vadiraj Rao, Massimo Mongillo, Danny Wan, Jo De Boeck, Anton Potocnik, Kristiaan De Greve,
- Abstract要約: 工業的製造法を用いて300mmCMOSパイロットラインで製造されたトランスモン量子ビットを初めて示す。
我々は,コヒーレンス,収量,変動性,老化など,我々のアプローチの妥当性を検証した大規模統計研究について述べる。
この結果により、超伝導量子コンピューティングプロセッサのより信頼性が高く、大規模で、真のCMOS互換な製造が誕生した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The development of superconducting qubit technology has shown great potential for the construction of practical quantum computers. As the complexity of quantum processors continues to grow, the need for stringent fabrication tolerances becomes increasingly critical. Utilizing advanced industrial fabrication processes could facilitate the necessary level of fabrication control to support the continued scaling of quantum processors. However, these industrial processes are currently not optimized to produce high coherence devices, nor are they a priori compatible with the commonly used approaches to make superconducting qubits. In this work, we demonstrate for the first time superconducting transmon qubits manufactured in a 300 mm CMOS pilot line, using industrial fabrication methods, with resulting relaxation and coherence times already exceeding 100 microseconds. We show across-wafer, large-scale statistics studies of coherence, yield, variability, and aging that confirm the validity of our approach. The presented industry-scale fabrication process, using exclusively optical lithography and reactive ion etching, shows performance and yield similar to the conventional laboratory-style techniques utilizing metal lift-off, angled evaporation, and electron-beam writing. Moreover, it offers potential for further upscaling by including three-dimensional integration and additional process optimization using advanced metrology and judicious choice of processing parameters and splits. This result marks the advent of more reliable, large-scale, truly CMOS-compatible fabrication of superconducting quantum computing processors.
- Abstract(参考訳): 超伝導量子ビット技術の発展は、実用的な量子コンピュータの構築に大きな可能性を示している。
量子プロセッサの複雑さが増大し続ければ、厳密な製造耐性の必要性はますます重要になる。
先進的な工業的製造プロセスを利用することで、量子プロセッサの継続的なスケーリングをサポートするために必要な製造制御を促進することができる。
しかし、これらの産業プロセスは現在、高コヒーレンスデバイスを製造するために最適化されていないし、超伝導量子ビットを作るために一般的に使用されるアプローチと互換性がない。
本研究では,300mmCMOSパイロットラインで製造されたトランスモン量子ビットを産業的製造法を用いて初めて超伝導し,100マイクロ秒を超える緩和時間とコヒーレンス時間を実証する。
我々は,コヒーレンス,収量,変動性,老化など,我々のアプローチの妥当性を検証した大規模統計研究について述べる。
光学リソグラフィーと反応性イオンエッチングを用いた産業規模の製造プロセスは, 従来の金属リフトオフ, 角化蒸発, 電子ビーム印刷を利用した実験室式技術と同等の性能と収量を示した。
さらに、3次元の統合や、高度なメロロジーを使ったプロセス最適化、および処理パラメータと分割のジャディカルな選択を含むことで、さらなるアップスケーリングの可能性をもっている。
この結果により、超伝導量子コンピューティングプロセッサのより信頼性が高く、大規模で、真のCMOS互換な製造が誕生した。
関連論文リスト
- Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
超伝導プロセッサのための強化学習型量子コンパイラを開発した。
短絡の新規・ハードウェア対応回路の発見能力を示す。
本研究は,効率的な量子コンパイルのためのハードウェアによるソフトウェア設計を実証する。
論文 参考訳(メタデータ) (2024-06-18T01:49:48Z) - Sparse Attention-driven Quality Prediction for Production Process Optimization in Digital Twins [53.70191138561039]
データ駆動方式で運用ロジックを符号化することで,生産ラインのディジタルツインをデプロイすることを提案する。
我々は,自己注意型時間畳み込みニューラルネットワークに基づく生産プロセスの品質予測モデルを採用する。
本手法は,本手法により,仮想及び実生産ライン間のシームレスな統合を促進できることを示す。
論文 参考訳(メタデータ) (2024-05-20T09:28:23Z) - Probing single electrons across 300 mm spin qubit wafers [0.0]
本研究では、低温300mmウエハプローブを用いて数百個の産業用スピンキュービット装置の性能データを1.6Kで収集する試験プロセスを提案する。
単電子動作電圧のランダムな変動を解析し、最適化された製造プロセスが300mmスケールで低レベルの障害を引き起こすことを確認する。
論文 参考訳(メタデータ) (2023-07-10T18:02:55Z) - First design of a superconducting qubit for the QUB-IT experiment [50.591267188664666]
QUB-ITプロジェクトの目標は、量子非破壊(QND)測定と絡み合った量子ビットを利用した、反復的な単一光子カウンタを実現することである。
本稿では,Qiskit-Metalを用いた共振器に結合したトランスモン量子ビットからなる第1の超伝導デバイスの設計とシミュレーションを行う。
論文 参考訳(メタデータ) (2022-07-18T07:05:10Z) - Path toward manufacturable superconducting qubits with relaxation times
exceeding 0.1 ms [0.0]
減算エッチング処理により平均クォービットエネルギー緩和時間T1が70$mu$sに達し,最大値が100$mu$sを超える量子ビットが得られることを示す。
提案した製造プロセスは、高コヒーレンス超伝導量子ビットのための製造可能な300 mm CMOSプロセスに向けた重要なマイルストーンとなる。
論文 参考訳(メタデータ) (2022-02-21T15:28:06Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
我々は,量子デバイスのダイナミクスを特徴付ける手法を開発し,デバイスパラメータを学習する。
このアプローチは、数値的に生成された実験データに基づいてトレーニングされた物理に依存しないリカレントニューラルネットワークより優れている。
このデモンストレーションは、ドメイン知識を活用することで、この特徴付けタスクの正確性と効率が向上することを示す。
論文 参考訳(メタデータ) (2021-06-24T15:58:57Z) - Near-Field Terahertz Nanoscopy of Coplanar Microwave Resonators [61.035185179008224]
超伝導量子回路は、主要な量子コンピューティングプラットフォームの一つである。
超伝導量子コンピューティングを実用上重要な点に進めるためには、デコヒーレンスに繋がる物質不完全性を特定し、対処することが重要である。
ここでは、テラヘルツ走査近接場光学顕微鏡を用いて、シリコン上の湿式エッチングアルミニウム共振器の局所誘電特性とキャリア濃度を調査する。
論文 参考訳(メタデータ) (2021-06-24T11:06:34Z) - Qubits made by advanced semiconductor manufacturing [0.0]
フルスケールの量子コンピュータは数百万ビットの量子ビットを統合する必要がある。
この要件を満たすために工業用半導体製造を活用するという約束は、シリコン量子ドットにおける量子コンピューティングの追求を加速させた。
本稿では、全光学リソグラフィーと全産業加工を用いた300mm半導体製造施設で作製された量子ドットを実証する。
論文 参考訳(メタデータ) (2021-01-29T15:41:39Z) - Integrated multiplexed microwave readout of silicon quantum dots in a
cryogenic CMOS chip [0.5202988483354373]
固体量子コンピュータは、個々の量子ビットの制御と読み出しと、高速な古典的データ処理を可能にするために、古典的エレクトロニクスを必要とする。
極低温で両方のサブシステムを統合することは、システムサイズや入出力(I/O)データ管理など、いくつかの大きなスケーリング上の課題を解決する可能性がある。
本稿では、シリコンベースの量子プロセッサの3つの重要な要素を収容する産業用CMOS技術を用いて、極低温集積回路(IC)を提案する。
論文 参考訳(メタデータ) (2021-01-20T19:30:15Z) - Coherent superconducting qubits from a subtractive junction fabrication
process [48.7576911714538]
ジョセフソントンネル接合は、量子ビットを含むほとんどの超伝導電子回路の中心である。
近年、サブミクロンスケールの重なり合う接合が注目されている。
この研究は、高度な材料と成長プロセスによるより標準化されたプロセスフローへの道を開き、超伝導量子回路の大規模製造において重要なステップとなる。
論文 参考訳(メタデータ) (2020-06-30T14:52:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。