論文の概要: EAGLE: Eigen Aggregation Learning for Object-Centric Unsupervised
Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2403.01482v1
- Date: Sun, 3 Mar 2024 11:24:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-06 21:03:38.096787
- Title: EAGLE: Eigen Aggregation Learning for Object-Centric Unsupervised
Semantic Segmentation
- Title(参考訳): EAGLE: オブジェクト中心の教師なしセマンティックセグメンテーションのための固有集約学習
- Authors: Chanyoung Kim, Woojung Han, Dayun Ju, Seong Jae Hwang
- Abstract要約: 意味的類似性行列から派生した固有ベイズを通して意味的および構造的手がかりを提供する手法であるEiCueを紹介する。
オブジェクトレベルの表現を画像内および画像間の整合性で学習する。
COCO-Stuff、Cityscapes、Potsdam-3データセットの実験では、最先端のUSSの結果が示されている。
- 参考スコア(独自算出の注目度): 5.982285717206533
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Semantic segmentation has innately relied on extensive pixel-level labeled
annotated data, leading to the emergence of unsupervised methodologies. Among
them, leveraging self-supervised Vision Transformers for unsupervised semantic
segmentation (USS) has been making steady progress with expressive deep
features. Yet, for semantically segmenting images with complex objects, a
predominant challenge remains: the lack of explicit object-level semantic
encoding in patch-level features. This technical limitation often leads to
inadequate segmentation of complex objects with diverse structures. To address
this gap, we present a novel approach, EAGLE, which emphasizes object-centric
representation learning for unsupervised semantic segmentation. Specifically,
we introduce EiCue, a spectral technique providing semantic and structural cues
through an eigenbasis derived from the semantic similarity matrix of deep image
features and color affinity from an image. Further, by incorporating our
object-centric contrastive loss with EiCue, we guide our model to learn
object-level representations with intra- and inter-image object-feature
consistency, thereby enhancing semantic accuracy. Extensive experiments on
COCO-Stuff, Cityscapes, and Potsdam-3 datasets demonstrate the state-of-the-art
USS results of EAGLE with accurate and consistent semantic segmentation across
complex scenes.
- Abstract(参考訳): セマンティクスのセグメンテーションは、ピクセルレベルのラベル付きアノテートデータに本質的に依存しており、教師なしの方法論が出現した。
その中では、教師なしセマンティックセグメンテーション(USS)に自己教師付きビジョントランスフォーマーを活用することで、表現力のある深い特徴で着実に進歩している。
しかし、複雑なオブジェクトでイメージをセグメンテーションする際、重要な課題は、パッチレベルの機能に明示的なオブジェクトレベルのセマンティックエンコーディングがないことである。
この技術的な制限は、しばしば多様な構造を持つ複雑なオブジェクトを不適切なセグメンテーションに導く。
このギャップに対処するために、教師なしセマンティックセグメンテーションのためのオブジェクト指向表現学習を強調する新しいアプローチであるEAGLEを提案する。
具体的には、深部画像の特徴と色親和性のセマンティック類似性行列から導かれる固有ベイジを通じて意味的および構造的手がかりを提供するスペクトル技術であるEiCueを紹介する。
さらに,EiCueにオブジェクト中心のコントラスト損失を組み込むことで,画像内および画像間のオブジェクト間整合性でオブジェクトレベルの表現を学習し,セマンティックな精度を向上させる。
COCO-Stuff、Cityscapes、Potsdam-3データセットに関する大規模な実験は、複雑なシーンにわたる正確で一貫したセマンティックセグメンテーションを備えたEAGLEの最先端のUSS結果を示している。
関連論文リスト
- Distilling Spectral Graph for Object-Context Aware Open-Vocabulary Semantic Segmentation [47.047267066525265]
画像にオブジェクトレベルの文脈知識を取り入れた新しいアプローチを導入する。
提案手法は,多種多様なデータセットにまたがる高い一般化性を有する最先端性能を実現する。
論文 参考訳(メタデータ) (2024-11-26T06:34:48Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
ジェネリックな方法でオブジェクトを発見できるため、教師なしのオブジェクト発見は有望である。
画像から高レベルな意味的特徴を抽出する意味誘導型自己教師学習モデルを設計する。
オブジェクト領域のローカライズのための主成分分析(PCA)を導入する。
論文 参考訳(メタデータ) (2023-07-07T04:03:48Z) - De-coupling and De-positioning Dense Self-supervised Learning [65.56679416475943]
Dense Self-Supervised Learning (SSL)メソッドは、複数のオブジェクトでイメージを処理する際に、画像レベルの特徴表現を使用する際の制限に対処する。
本研究は, 層深度やゼロパディングに伴う受容野の増大によって生じる, 結合と位置バイアスに悩まされていることを示す。
我々はCOCOにおける本手法の利点と、オブジェクト分類、セマンティックセグメンテーション、オブジェクト検出のための新しい挑戦的ベンチマークであるOpenImage-MINIについて示す。
論文 参考訳(メタデータ) (2023-03-29T18:07:25Z) - Framework-agnostic Semantically-aware Global Reasoning for Segmentation [29.69187816377079]
本稿では,画像特徴を潜在表現に投影し,それら間の関係を推論するコンポーネントを提案する。
我々の設計では、活性化領域が空間的に不整合であることを保証することにより、潜在領域が意味概念を表現することを奨励している。
潜在トークンはセマンティックに解釈可能で多様性があり、下流タスクに転送可能な豊富な機能セットを提供します。
論文 参考訳(メタデータ) (2022-12-06T21:42:05Z) - Deep Spectral Methods: A Surprisingly Strong Baseline for Unsupervised
Semantic Segmentation and Localization [98.46318529630109]
画像分解をグラフ分割問題として再フレーミングすることで,従来のスペクトル分割法から着想を得た。
これらの固有ベクトルはすでにイメージを意味のあるセグメントに分解しており、シーン内のオブジェクトのローカライズに容易に利用できる。
データセットにまたがるこれらのセグメントに関連する機能をクラスタ化することで、明確に定義された、名前付き可能なリージョンを得ることができる。
論文 参考訳(メタデータ) (2022-05-16T17:47:44Z) - Self-Supervised Learning of Object Parts for Semantic Segmentation [7.99536002595393]
我々は、オブジェクト部品の自己教師型学習がこの問題の解決策であると主張している。
本手法は3つのセマンティックセグメンテーションベンチマークの最先端を17%-3%超える。
論文 参考訳(メタデータ) (2022-04-27T17:55:17Z) - TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic
Segmentation [44.75300205362518]
教師なしセマンティックセグメンテーションは、手動のアノテーションを使わずに、低レベルの視覚的特徴の高レベルセマンティック表現を得ることを目的としている。
本稿では, 非常に複雑なシナリオにおける細粒度セグメンテーションのための, トップダウンの教師なしセグメンテーションフレームワークを提案する。
我々の結果は、トップダウンの教師なしセグメンテーションが、オブジェクト中心とシーン中心の両方のデータセットに対して堅牢であることを示している。
論文 参考訳(メタデータ) (2021-12-02T18:59:03Z) - Three Ways to Improve Semantic Segmentation with Self-Supervised Depth
Estimation [90.87105131054419]
ラベルなし画像列からの自己教師付き単眼深度推定により強化された半教師付きセマンティックセマンティックセマンティックセマンティクスのフレームワークを提案する。
提案されたモデルをCityscapesデータセット上で検証する。
論文 参考訳(メタデータ) (2020-12-19T21:18:03Z) - Mining Cross-Image Semantics for Weakly Supervised Semantic Segmentation [128.03739769844736]
2つのニューラルコアテンションを分類器に組み込んで、画像間のセマンティックな類似点と相違点をキャプチャする。
オブジェクトパターン学習の強化に加えて、コアテンションは他の関連する画像からのコンテキストを活用して、ローカライズマップの推論を改善することができる。
提案アルゴリズムは,これらすべての設定に対して新たな最先端性を設定し,その有効性と一般化性を示す。
論文 参考訳(メタデータ) (2020-07-03T21:53:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。