論文の概要: ConvTimeNet: A Deep Hierarchical Fully Convolutional Model for Multivariate Time Series Analysis
- arxiv url: http://arxiv.org/abs/2403.01493v2
- Date: Sat, 14 Dec 2024 08:52:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 13:49:48.457874
- Title: ConvTimeNet: A Deep Hierarchical Fully Convolutional Model for Multivariate Time Series Analysis
- Title(参考訳): ConvTimeNet:多変量時系列解析のための階層的完全畳み込みモデル
- Authors: Mingyue Cheng, Jiqian Yang, Tingyue Pan, Qi Liu, Zhi Li,
- Abstract要約: ConvTimeNetは時系列解析のために設計された階層的な純粋な畳み込みモデルである。
データ駆動方式で時間依存の基本単位の局所パターンを適応的に知覚する。
大規模なカーネル機構を使用して、畳み込みブロックが深く積み重ねられるようにする。
- 参考スコア(独自算出の注目度): 7.979501926410114
- License:
- Abstract: Designing effective models for learning time series representations is foundational for time series analysis. Many previous works have explored time series representation modeling approaches and have made progress in this area. Despite their effectiveness, they lack adaptive perception of local patterns in temporally dependent basic units and fail to capture the multi-scale dependency among these units. Instead of relying on prevalent methods centered around self-attention mechanisms, we propose ConvTimeNet, a hierarchical pure convolutional model designed for time series analysis. ConvTimeNet introduces a deformable patch layer that adaptively perceives local patterns of temporally dependent basic units in a data-driven manner. Based on the extracted local patterns, hierarchical pure convolutional blocks are designed to capture dependency relationships among the representations of basic units at different scales. Moreover, a large kernel mechanism is employed to ensure that convolutional blocks can be deeply stacked, thereby achieving a larger receptive field. In this way, local patterns and their multi-scale dependencies can be effectively modeled within a single model. Extensive experiments comparing a wide range of different types of models demonstrate that pure convolutional models still exhibit strong viability, effectively addressing the aforementioned two challenges and showing superior performance across multiple tasks. The code is available for reproducibility.
- Abstract(参考訳): 時系列表現を学習するための効果的なモデルの設計は時系列解析の基礎となる。
過去の多くの研究は時系列表現モデリングのアプローチを探求し、この分野に進展をもたらした。
有効性にもかかわらず、時間的に依存する基本単位における局所パターンの適応的な認識が欠如し、これらの単位間のマルチスケール依存を捉えることができない。
自己注意機構を中心とした一般的な手法に頼る代わりに,時系列解析用に設計された階層型純粋畳み込みモデルであるConvTimeNetを提案する。
ConvTimeNetは、データ駆動方式で時間依存の基本単位の局所パターンを適応的に知覚する、変形可能なパッチ層を導入している。
抽出した局所パターンに基づいて、階層的な純粋畳み込みブロックは、基本単位の表現間の依存関係を異なるスケールで捉えるように設計されている。
さらに、畳み込みブロックが深く積み重ねられることを保証するために、大きなカーネル機構を用いる。
このように、ローカルパターンとそのマルチスケール依存関係は、単一のモデル内で効果的にモデル化できる。
様々な種類のモデルを比較した大規模な実験により、純粋な畳み込みモデルは依然として強い生存性を示し、上記の2つの課題に効果的に対処し、複数のタスクにまたがる優れた性能を示すことを示した。
コードは再現可能である。
関連論文リスト
- PRformer: Pyramidal Recurrent Transformer for Multivariate Time Series Forecasting [82.03373838627606]
Transformerアーキテクチャにおける自己保持機構は、時系列予測において時間順序を符号化するために位置埋め込みを必要とする。
この位置埋め込みへの依存は、トランスフォーマーの時間的シーケンスを効果的に表現する能力を制限している、と我々は主張する。
本稿では,Prepreを標準的なTransformerエンコーダと統合し,様々な実世界のデータセット上での最先端性能を示す。
論文 参考訳(メタデータ) (2024-08-20T01:56:07Z) - ForecastGrapher: Redefining Multivariate Time Series Forecasting with Graph Neural Networks [9.006068771300377]
本稿では、複雑な時間的ダイナミクスと系列間相関をキャプチャするフレームワークであるForecastGrapherを紹介する。
提案手法は,各系列の時間的変動を反映するカスタムノード埋め込みの生成,系列間の相関関係を符号化する適応的隣接行列の構築,および第3に,ノード特徴分布の多様化によるGNNの表現力の増大という,3つの重要なステップによって支えられている。
論文 参考訳(メタデータ) (2024-05-28T10:40:20Z) - TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
本稿では,新しい2ストリーム機能融合 "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) アーキテクチャを提案する。
時間空間領域における意味のあるパターンをよりよく学習するために、ハイブリッド畳み込み変換器を統合する「CT」ストリームを設計する。
並行して、時間周波数領域からリッチなパターンを効率的に抽出するために、連続ウェーブレット変換(CWT)を用いて情報を2次元テンソル形式で表現する「TC」ストリームを導入する。
論文 参考訳(メタデータ) (2024-04-15T06:01:48Z) - Orchid: Flexible and Data-Dependent Convolution for Sequence Modeling [4.190836962132713]
本稿では,従来の注意機構の2次複雑さに対処する新しいアーキテクチャであるOrchidを紹介する。
このアーキテクチャのコアには、新しいデータ依存のグローバル畳み込み層があり、入力シーケンスに条件付きカーネルを文脈的に適応させる。
言語モデリングや画像分類など,複数の領域にまたがるモデルの評価を行い,その性能と汎用性を強調した。
論文 参考訳(メタデータ) (2024-02-28T17:36:45Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
マスク型ユニバーサル時系列予測変換器(モイライ)について述べる。
Moiraiは、新たに導入された大規模オープンタイムシリーズアーカイブ(LOTSA)で訓練されており、9つのドメインで27億以上の観測が行われた。
Moiraiは、フルショットモデルと比較してゼロショットの予測器として、競争力や優れたパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-02-04T20:00:45Z) - TimeMAE: Self-Supervised Representations of Time Series with Decoupled
Masked Autoencoders [55.00904795497786]
トランスフォーマネットワークに基づく転送可能な時系列表現を学習するための,新しい自己教師型パラダイムであるTimeMAEを提案する。
TimeMAEは双方向符号化方式を用いて時系列の豊富な文脈表現を学習する。
新たに挿入されたマスク埋め込みによって生じる不一致を解消するため、分離されたオートエンコーダアーキテクチャを設計する。
論文 参考訳(メタデータ) (2023-03-01T08:33:16Z) - FormerTime: Hierarchical Multi-Scale Representations for Multivariate
Time Series Classification [53.55504611255664]
formerTimeは、多変量時系列分類タスクの分類能力を改善する階層的表現モデルである。
1)時系列データから階層的なマルチスケール表現を学習し、(2)トランスフォーマーと畳み込みネットワークの強さを継承し、(3)自己維持メカニズムによって引き起こされる効率の課題に取り組む。
論文 参考訳(メタデータ) (2023-02-20T07:46:14Z) - Cluster-Former: Clustering-based Sparse Transformer for Long-Range
Dependency Encoding [90.77031668988661]
Cluster-Formerはクラスタリングベースの新しいスパーストランスであり、チャンクされたシーケンスにまたがって注意を向ける。
提案されたフレームワークは、Sliding-Window LayerとCluster-Former Layerの2つのユニークなタイプのTransformer Layerにピボットされている。
実験によると、Cluster-Formerはいくつかの主要なQAベンチマークで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2020-09-13T22:09:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。