論文の概要: Variational Conditional Dependence Hidden Markov Models for
Skeleton-Based Action Recognition
- arxiv url: http://arxiv.org/abs/2002.05809v2
- Date: Thu, 9 Sep 2021 21:34:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-01 09:33:15.769752
- Title: Variational Conditional Dependence Hidden Markov Models for
Skeleton-Based Action Recognition
- Title(参考訳): 骨格に基づく行動認識のための変動条件依存隠れマルコフモデル
- Authors: Konstantinos P. Panousis, Sotirios Chatzis, Sergios Theodoridis
- Abstract要約: 本稿では、時間変化の時間依存性パターンをキャプチャする問題に対処するために、従来の逐次モデリング手法を再検討する。
我々は、過去のフレームへの依存を動的に推定するHMMの異なる定式化を提案する。
フォワード・バックワード・アルゴリズムに基づく抽出可能な推論アルゴリズムを導出する。
- 参考スコア(独自算出の注目度): 7.9603223299524535
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hidden Markov Models (HMMs) comprise a powerful generative approach for
modeling sequential data and time-series in general. However, the commonly
employed assumption of the dependence of the current time frame to a single or
multiple immediately preceding frames is unrealistic; more complicated dynamics
potentially exist in real world scenarios. This paper revisits conventional
sequential modeling approaches, aiming to address the problem of capturing
time-varying temporal dependency patterns. To this end, we propose a different
formulation of HMMs, whereby the dependence on past frames is dynamically
inferred from the data. Specifically, we introduce a hierarchical extension by
postulating an additional latent variable layer; therein, the (time-varying)
temporal dependence patterns are treated as latent variables over which
inference is performed. We leverage solid arguments from the Variational Bayes
framework and derive a tractable inference algorithm based on the
forward-backward algorithm. As we experimentally show, our approach can model
highly complex sequential data and can effectively handle data with missing
values.
- Abstract(参考訳): hidden markov model (hmms) はシーケンシャルデータや時系列をモデリングするための強力な生成手法である。
しかし、現在の時間枠の1つまたは複数の直前のフレームへの依存に関する一般的な仮定は非現実的であり、より複雑なダイナミクスは現実世界のシナリオに存在する可能性がある。
本稿では,時間変動する時間依存パターンを捉える問題に対処するために,従来の逐次モデリング手法を再考する。
そこで本研究では,過去のフレームへの依存性をデータから動的に推定する,hmmの異なる定式化を提案する。
具体的には,追加の潜在変数層を仮定して階層的拡張を導入する。そこで,(時変)時間依存パターンを推論を行う潜在変数として扱う。
本研究では, 変分ベイズフレームワークのソリッド引数を活用し, 前向きアルゴリズムに基づく抽出可能な推論アルゴリズムを導出する。
実験で示すように,本手法は高度に複雑なシーケンシャルデータをモデル化し,欠落した値のデータを効果的に処理できる。
関連論文リスト
- tPARAFAC2: Tracking evolving patterns in (incomplete) temporal data [0.7285444492473742]
進化因子の時間的スムーズ性正規化を利用した t(emporal)PARAFAC2 を導入する。
シミュレーションおよび実データを用いた数値実験により,時間的滑らか度正則化の有効性が示された。
論文 参考訳(メタデータ) (2024-07-01T15:10:55Z) - UniTST: Effectively Modeling Inter-Series and Intra-Series Dependencies for Multivariate Time Series Forecasting [98.12558945781693]
フラット化されたパッチトークンに統一された注意機構を含む変圧器ベースモデルUniTSTを提案する。
提案モデルでは単純なアーキテクチャを採用しているが,時系列予測のためのいくつかのデータセットの実験で示されたような,魅力的な性能を提供する。
論文 参考訳(メタデータ) (2024-06-07T14:39:28Z) - From Orthogonality to Dependency: Learning Disentangled Representation for Multi-Modal Time-Series Sensing Signals [27.95734153126108]
表現学習の既存の方法は、モダリティ共有変数とモダリティ固有の潜在変数を分離することを目的としている。
本稿では、モーダリティ共有変数とモーダリティ固有潜伏変数が依存する一般的な生成過程を提案する。
当社の textbfMATE モデルは,モーダリティ共有型およびモーダリティ特化型事前ネットワークを備えた時間変動型推論アーキテクチャ上に構築されている。
論文 参考訳(メタデータ) (2024-05-25T06:26:02Z) - PDETime: Rethinking Long-Term Multivariate Time Series Forecasting from
the perspective of partial differential equations [49.80959046861793]
本稿では,ニューラルPDEソルバの原理に着想を得た新しいLMTFモデルであるPDETimeを提案する。
7つの異なる時間的実世界のLMTFデータセットを用いた実験により、PDETimeがデータ固有の性質に効果的に適応できることが判明した。
論文 参考訳(メタデータ) (2024-02-25T17:39:44Z) - ChiroDiff: Modelling chirographic data with Diffusion Models [132.5223191478268]
チャーログラフィーデータのための強力なモデルクラスである「拡散確率モデル(Denoising Diffusion Probabilistic Models)」やDDPMを導入している。
我々のモデルは「ChiroDiff」と呼ばれ、非自己回帰的であり、全体論的概念を捉えることを学び、したがって高い時間的サンプリングレートに回復する。
論文 参考訳(メタデータ) (2023-04-07T15:17:48Z) - An Interpretable and Efficient Infinite-Order Vector Autoregressive
Model for High-Dimensional Time Series [1.4939176102916187]
本稿では,高次元時系列に対する新しいスパース無限次VARモデルを提案する。
このモデルによって得られたVARMA型力学の時間的・横断的な構造は別々に解釈できる。
統計的効率と解釈可能性の向上は、時間的情報をほとんど失わずに達成できる。
論文 参考訳(メタデータ) (2022-09-02T17:14:24Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
マルチスケールアテンション正規化フロー(MANF)と呼ばれる非自己回帰型ディープラーニングモデルを提案する。
我々のモデルは累積誤差の影響を回避し、時間の複雑さを増大させない。
本モデルは,多くの多変量データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-16T07:53:42Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) モデルを提案する。
我々のモデルは、フレキシブルニューラルネットワークを用いて各タイムスタンプの平均と分散をパラメータ化する。
合成データセットと公開実世界のベンチマークの両方において,本モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-02-02T06:15:15Z) - Time Adaptive Gaussian Model [0.913755431537592]
我々のモデルは、時間的グラフィカルモデルの推論のための最先端手法の一般化である。
時間内にデータポイントをクラスタリングすることでパターン認識を行い、観察された変数間の確率的(そしておそらく因果関係)関係を見つける。
論文 参考訳(メタデータ) (2021-02-02T00:28:14Z) - Deep Neural Dynamic Bayesian Networks applied to EEG sleep spindles
modeling [0.0]
本稿では,視覚的スコアリングにおいて専門家が積極的に実施する制約を組み込んだ単一チャネル脳波生成モデルを提案する。
我々は、一般化期待最大化の特別な場合として、正確に、抽出可能な推論のためのアルゴリズムを導出する。
我々は、このモデルを3つの公開データセット上で検証し、より複雑なモデルが最先端の検出器を越えられるように支援する。
論文 参考訳(メタデータ) (2020-10-16T21:48:29Z) - Variational Hyper RNN for Sequence Modeling [69.0659591456772]
本稿では,時系列データにおける高変数の取得に優れる新しい確率的シーケンスモデルを提案する。
提案手法では,時間潜時変数を用いて基礎となるデータパターンに関する情報をキャプチャする。
提案手法の有効性を,合成および実世界のシーケンシャルデータに示す。
論文 参考訳(メタデータ) (2020-02-24T19:30:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。