論文の概要: ReMatch: Retrieval Enhanced Schema Matching with LLMs
- arxiv url: http://arxiv.org/abs/2403.01567v2
- Date: Thu, 30 May 2024 14:33:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-31 20:54:36.742702
- Title: ReMatch: Retrieval Enhanced Schema Matching with LLMs
- Title(参考訳): ReMatch: LLMとの検索強化スキーママッチング
- Authors: Eitam Sheetrit, Menachem Brief, Moshik Mishaeli, Oren Elisha,
- Abstract要約: 本稿では,検索強化大言語モデル(LLM)を用いたスキーママッチングのためのReMatchという新しい手法を提案する。
大規模な実世界のスキーマに対する実験結果から,ReMatchが効果的なマーカであることが示された。
- 参考スコア(独自算出の注目度): 0.874967598360817
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Schema matching is a crucial task in data integration, involving the alignment of a source schema with a target schema to establish correspondence between their elements. This task is challenging due to textual and semantic heterogeneity, as well as differences in schema sizes. Although machine-learning-based solutions have been explored in numerous studies, they often suffer from low accuracy, require manual mapping of the schemas for model training, or need access to source schema data which might be unavailable due to privacy concerns. In this paper we present a novel method, named ReMatch, for matching schemas using retrieval-enhanced Large Language Models (LLMs). Our method avoids the need for predefined mapping, any model training, or access to data in the source database. Our experimental results on large real-world schemas demonstrate that ReMatch is an effective matcher. By eliminating the requirement for training data, ReMatch becomes a viable solution for real-world scenarios.
- Abstract(参考訳): スキーママッチングはデータ統合において重要なタスクであり、ソーススキーマとターゲットスキーマをアライメントすることで、要素間の対応を確立する。
このタスクは、テキストとセマンティックな異質性、およびスキーマサイズの違いによって困難である。
機械学習ベースのソリューションは多くの研究で研究されているが、しばしば低い精度に悩まされ、モデルのトレーニングのためにスキーマを手動でマッピングする必要がある。
本稿では,検索強化大言語モデル(LLM)を用いたスキーママッチング手法であるReMatchを提案する。
提案手法では,事前定義されたマッピングやモデルトレーニング,あるいはソースデータベースのデータへのアクセスが不要になる。
大規模な実世界のスキーマに対する実験結果から,ReMatchが効果的なマーカであることが示された。
データトレーニングの要件をなくすことで、ReMatchは現実のシナリオで実行可能なソリューションになります。
関連論文リスト
- Matchmaker: Self-Improving Large Language Model Programs for Schema Matching [60.23571456538149]
本稿では,スキーママッチングのための合成言語モデルプログラムを提案する。
Matchmakerは、ラベル付きデモを必要とせずに、ゼロショットで自己改善する。
実証的に、Matchmakerが以前のMLベースのアプローチより優れている実世界の医療スキーママッチングベンチマークを実証する。
論文 参考訳(メタデータ) (2024-10-31T16:34:03Z) - Schema Matching with Large Language Models: an Experimental Study [0.580553237364985]
本稿では,市販のLarge Language Models (LLM) を用いてスキーママッチングを行う。
本研究の目的は,2つの関係スキーマの要素間の意味的対応を名前と記述のみを用いて識別することである。
論文 参考訳(メタデータ) (2024-07-16T15:33:00Z) - List-aware Reranking-Truncation Joint Model for Search and
Retrieval-augmented Generation [80.12531449946655]
本稿では,2つのタスクを同時に実行可能なRe rank-Truncation joint model(GenRT)を提案する。
GenRTは、エンコーダ-デコーダアーキテクチャに基づく生成パラダイムによるリランクとトランケーションを統合している。
提案手法は,Web検索および検索拡張LLMにおけるリランクタスクとトラルケーションタスクの両方においてSOTA性能を実現する。
論文 参考訳(メタデータ) (2024-02-05T06:52:53Z) - Entity Matching using Large Language Models [3.7277730514654555]
本稿では, PLM ベースのマーカに代わる, タスク固有の訓練データ依存モデルとして, LLM (Generative Large Language Model) を用いて検討する。
GPT4は一致判定のための構造化された説明を生成でき、一致した誤りの原因を自動的に特定できることを示す。
論文 参考訳(メタデータ) (2023-10-17T13:12:32Z) - Drafting Event Schemas using Language Models [48.81285141287434]
複雑なイベントを記述するためにこのようなスキーマを作成するプロセスに注目します。
私たちの焦点は、十分な多様性と重要なイベントのリコールを達成できるかどうかにあります。
大規模言語モデルは、2つの異なるデータセットから取り出されたスキーマに対して適度なリコールを達成することができることを示す。
論文 参考訳(メタデータ) (2023-05-24T07:57:04Z) - Schema-adaptable Knowledge Graph Construction [47.772335354080795]
従来の知識グラフ構築(KGC)アプローチは、通常、事前定義されたスキーマの閉じたセットで静的情報抽出パラダイムに従う。
我々は,スキーマ適応型KGCと呼ばれる新しいタスクを提案する。このタスクは,動的に変化するスキーマグラフに基づいて,再学習せずにエンティティ,リレーション,イベントを継続的に抽出することを目的としている。
論文 参考訳(メタデータ) (2023-05-15T15:06:20Z) - It's AI Match: A Two-Step Approach for Schema Matching Using Embeddings [10.732163031244646]
ニューラル埋め込みに基づくスキーママッチングのための新しいエンドツーエンドアプローチを提案する。
以上の結果から,我々の手法は,堅牢かつ信頼性の高い方法で対応を決定可能であることが示唆された。
論文 参考訳(メタデータ) (2022-03-08T19:42:28Z) - Unpaired Referring Expression Grounding via Bidirectional Cross-Modal
Matching [53.27673119360868]
表現基盤の参照はコンピュータビジョンにおいて重要かつ困難な課題である。
本稿では,これらの課題に対処する新しい双方向クロスモーダルマッチング(BiCM)フレームワークを提案する。
私たちのフレームワークは、2つの一般的なグラウンドデータセットで、以前の作業の6.55%と9.94%を上回っています。
論文 参考訳(メタデータ) (2022-01-18T01:13:19Z) - Automated Metadata Harmonization Using Entity Resolution & Contextual
Embedding [0.0]
我々は、Cogntive DatabaseのDb2Vec埋め込みアプローチの助けを借りて、このステップの自動化を実演する。
一致したスキーマとは別に、ターゲットデータモデルの正しい存在論的構造も推測できることを実証する。
論文 参考訳(メタデータ) (2020-10-17T02:14:15Z) - Learning to Match Jobs with Resumes from Sparse Interaction Data using
Multi-View Co-Teaching Network [83.64416937454801]
ジョブ列のインタラクションデータは疎結合でノイズが多く、ジョブ列のマッチングアルゴリズムのパフォーマンスに影響する。
求人情報マッチングのための疎相互作用データから,新しいマルチビュー協調学習ネットワークを提案する。
我々のモデルは求人マッチングの最先端手法より優れている。
論文 参考訳(メタデータ) (2020-09-25T03:09:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。