Small Models are LLM Knowledge Triggers on Medical Tabular Prediction
- URL: http://arxiv.org/abs/2403.01570v3
- Date: Fri, 28 Feb 2025 09:23:04 GMT
- Title: Small Models are LLM Knowledge Triggers on Medical Tabular Prediction
- Authors: Jiahuan Yan, Jintai Chen, Chaowen Hu, Bo Zheng, Yaojun Hu, Jimeng Sun, Jian Wu,
- Abstract summary: We propose SERSAL, a general self-prompting method by synergy learning with small models.<n>We show that SERSAL attains substantial improvement compared to linguistic prompting methods.
- Score: 39.78560996984352
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent development in large language models (LLMs) has demonstrated impressive domain proficiency on unstructured textual or multi-modal tasks. However, despite with intrinsic world knowledge, their application on structured tabular data prediction still lags behind, primarily due to the numerical insensitivity and modality discrepancy that brings a gap between LLM reasoning and statistical tabular learning. Unlike textual or vision data (e.g., electronic clinical notes or medical imaging data), tabular data is often presented in heterogeneous numerical values (e.g., CBC reports). This ubiquitous data format requires intensive expert annotation, and its numerical nature limits LLMs' capability to effectively transfer untapped domain expertise. In this paper, we propose SERSAL, a general self-prompting method by synergy learning with small models to enhance LLM tabular prediction in an unsupervised manner. Specifically, SERSAL utilizes the LLM's prior outcomes as original soft noisy annotations, which are dynamically leveraged to teach a better small student model. Reversely, the outcomes from the trained small model are used to teach the LLM to further refine its real capability. This process can be repeatedly applied to gradually distill refined knowledge for continuous progress. Comprehensive experiments on widely used medical domain tabular datasets show that, without access to gold labels, applying SERSAL to OpenAI GPT reasoning process attains substantial improvement compared to linguistic prompting methods, which serves as an orthogonal direction for tabular LLM, and increasing prompting bonus is observed as more powerful LLMs appear.
Related papers
- SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - A Single Transformer for Scalable Vision-Language Modeling [74.05173379908703]
We present SOLO, a single transformer for visiOn-Language mOdeling.
A unified single Transformer architecture, like SOLO, effectively addresses these scalability concerns in LVLMs.
In this paper, we introduce the first open-source training recipe for developing SOLO, an open-source 7B LVLM.
arXiv Detail & Related papers (2024-07-08T22:40:15Z) - RLAIF-V: Aligning MLLMs through Open-Source AI Feedback for Super GPT-4V Trustworthiness [94.03511733306296]
We introduce RLAIF-V, a framework that aligns MLLMs in a fully open-source paradigm for super GPT-4V trustworthiness.
RLAIF-V maximally exploits the open-source feedback from two perspectives, including high-quality feedback data and online feedback learning algorithm.
Experiments show that RLAIF-V substantially enhances the trustworthiness of models without sacrificing performance on other tasks.
arXiv Detail & Related papers (2024-05-27T14:37:01Z) - Large Language Models Can Automatically Engineer Features for Few-Shot Tabular Learning [35.03338699349037]
We propose a novel in-context learning framework, FeatLLM, which employs Large Language Models as feature engineers.
FeatLLM generates high-quality rules, significantly (10% on average) outperforming alternatives such as TabLLM and STUNT.
arXiv Detail & Related papers (2024-04-15T06:26:08Z) - An Empirical Study of Automated Vulnerability Localization with Large Language Models [21.84971967029474]
Large Language Models (LLMs) have shown potential in various domains, yet their effectiveness in vulnerability localization remains underexplored.
Our investigation encompasses 10+ leading LLMs suitable for code analysis, including ChatGPT and various open-source models.
We explore the efficacy of these LLMs using 4 distinct paradigms: zero-shot learning, one-shot learning, discriminative fine-tuning, and generative fine-tuning.
arXiv Detail & Related papers (2024-03-30T08:42:10Z) - Unleashing the Potential of Large Language Models for Predictive Tabular Tasks in Data Science [17.282770819829913]
This research endeavors to apply Large Language Models (LLMs) towards addressing these predictive tasks.
Our research aims to mitigate this gap by compiling a comprehensive corpus of tables annotated with instructions and executing large-scale training of Llama-2.
arXiv Detail & Related papers (2024-03-29T14:41:21Z) - Towards Modeling Learner Performance with Large Language Models [7.002923425715133]
This paper investigates whether the pattern recognition and sequence modeling capabilities of LLMs can be extended to the domain of knowledge tracing.
We compare two approaches to using LLMs for this task, zero-shot prompting and model fine-tuning, with existing, non-LLM approaches to knowledge tracing.
While LLM-based approaches do not achieve state-of-the-art performance, fine-tuned LLMs surpass the performance of naive baseline models and perform on par with standard Bayesian Knowledge Tracing approaches.
arXiv Detail & Related papers (2024-02-29T14:06:34Z) - ALLaVA: Harnessing GPT4V-Synthesized Data for Lite Vision-Language Models [45.040292339670096]
Large vision-language models (LVLMs) have shown premise in a broad range of vision-language tasks with their strong reasoning and generalization capabilities.
This study aims to bridge the performance gap between traditional-scale LVLMs and resource-friendly lite versions by adopting high-quality training data.
arXiv Detail & Related papers (2024-02-18T19:26:49Z) - Mitigating Object Hallucination in Large Vision-Language Models via
Classifier-Free Guidance [56.04768229686853]
Large Vision-Language Models (LVLMs) tend to hallucinate non-existing objects in the images.
We introduce a framework called Mitigating hallucinAtion via classifieR-Free guIdaNcE (MARINE)
MARINE is both training-free and API-free, and can effectively and efficiently reduce object hallucinations during the generation process.
arXiv Detail & Related papers (2024-02-13T18:59:05Z) - Data-efficient Large Vision Models through Sequential Autoregression [58.26179273091461]
We develop an efficient, autoregression-based vision model on a limited dataset.
We demonstrate how this model achieves proficiency in a spectrum of visual tasks spanning both high-level and low-level semantic understanding.
Our empirical evaluations underscore the model's agility in adapting to various tasks, heralding a significant reduction in the parameter footprint.
arXiv Detail & Related papers (2024-02-07T13:41:53Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z) - From Supervised to Generative: A Novel Paradigm for Tabular Deep Learning with Large Language Models [18.219485459836285]
Generative Tabular Learning (GTL) is a novel framework that integrates the advanced functionalities of large language models (LLMs)
Our empirical study spans 384 public datasets, rigorously analyzing GTL's scaling behaviors.
GTL-LLaMA-2 model demonstrates superior zero-shot and in-context learning capabilities across numerous classification and regression tasks.
arXiv Detail & Related papers (2023-10-11T09:37:38Z) - Language models are weak learners [71.33837923104808]
We show that prompt-based large language models can operate effectively as weak learners.
We incorporate these models into a boosting approach, which can leverage the knowledge within the model to outperform traditional tree-based boosting.
Results illustrate the potential for prompt-based LLMs to function not just as few-shot learners themselves, but as components of larger machine learning pipelines.
arXiv Detail & Related papers (2023-06-25T02:39:19Z) - Interpretable Medical Diagnostics with Structured Data Extraction by
Large Language Models [59.89454513692417]
Tabular data is often hidden in text, particularly in medical diagnostic reports.
We propose a novel, simple, and effective methodology for extracting structured tabular data from textual medical reports, called TEMED-LLM.
We demonstrate that our approach significantly outperforms state-of-the-art text classification models in medical diagnostics.
arXiv Detail & Related papers (2023-06-08T09:12:28Z) - Large Language Models Are Latent Variable Models: Explaining and Finding
Good Demonstrations for In-Context Learning [104.58874584354787]
In recent years, pre-trained large language models (LLMs) have demonstrated remarkable efficiency in achieving an inference-time few-shot learning capability known as in-context learning.
This study aims to examine the in-context learning phenomenon through a Bayesian lens, viewing real-world LLMs as latent variable models.
arXiv Detail & Related papers (2023-01-27T18:59:01Z) - Explainability of Traditional and Deep Learning Models on Longitudinal
Healthcare Records [0.0]
Rigorous evaluation of explainability is often missing, as comparisons between models and various explainability methods have not been well-studied.
Our work is one of the first to evaluate explainability performance between and within traditional (XGBoost) and deep learning (LSTM with Attention) models on both a global and individual per-prediction level.
arXiv Detail & Related papers (2022-11-22T04:39:17Z) - Differentially Private Vertical Federated Learning [14.690310701654827]
In this paper, we aim to explore how to protect the privacy of individual organisation data in a differential privacy (DP) setting.
Our results show that a trade-off point needs to be found to achieve a balance between the vertical FL performance and privacy protection.
arXiv Detail & Related papers (2022-11-13T01:24:38Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
We propose a novel approach, black-box adversarial reprogramming (BAR), that repurposes a well-trained black-box machine learning model.
Using zeroth order optimization and multi-label mapping techniques, BAR can reprogram a black-box ML model solely based on its input-output responses.
BAR outperforms state-of-the-art methods and yields comparable performance to the vanilla adversarial reprogramming method.
arXiv Detail & Related papers (2020-07-17T01:52:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.