論文の概要: Inverted-circuit zero-noise extrapolation for quantum gate error
mitigation
- arxiv url: http://arxiv.org/abs/2403.01608v1
- Date: Sun, 3 Mar 2024 20:27:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-06 20:36:05.433666
- Title: Inverted-circuit zero-noise extrapolation for quantum gate error
mitigation
- Title(参考訳): 量子ゲート誤差軽減のための逆回路ゼロノイズ外挿法
- Authors: Kathrin F. Koenig, Finn Reinecke, Walter Hahn and Thomas Wellens
- Abstract要約: 本稿では,量子回路で発生する誤差の強度を簡易に推定する手法を提案する。
逆回路を付加し、初期状態の確率を測定することにより、回路の誤差強度を決定する。
提案手法は,現在のハードウェアにおいて特に有効であることが証明され,その短期量子コンピューティングアプリケーションへの適用性を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A common approach to deal with gate errors in modern quantum-computing
hardware is zero-noise extrapolation. By artificially amplifying errors and
extrapolating the expectation values obtained with different error strengths
towards the zero-error (zero-noise) limit, the technique aims at rectifying
errors in noisy quantum computing systems. For an accurate extrapolation, it is
essential to know the exact factors of the noise amplification. In this
article, we propose a simple method for estimating the strength of errors
occurring in a quantum circuit and demonstrate improved extrapolation results.
The method determines the error strength for a circuit by appending to it the
inverted circuit and measuring the probability of the initial state. The
estimation of error strengths is easy to implement for arbitrary circuits and
does not require a previous characterisation of noise properties. We compare
this method with the conventional zero-noise extrapolation method and show that
the novel method leads to a more accurate calculation of expectation values.
Our method proves to be particularly effective on current hardware, showcasing
its suitability for near-term quantum computing applications.
- Abstract(参考訳): 現代の量子コンピューティングハードウェアにおけるゲートエラーに対処する一般的なアプローチはゼロノイズ外挿である。
誤差を人工的に増幅し、異なる誤差強度で得られた期待値をゼロエラー(ゼロノイズ)限界に向けて外挿することにより、ノイズ量子コンピューティングシステムにおける誤差の修正を目標とする。
正確な外挿を行うためには、ノイズ増幅の正確な要因を知ることが不可欠である。
本稿では,量子回路において発生する誤差の強度を簡易に推定する手法を提案する。
逆回路を付加し、初期状態の確率を測定することにより、回路の誤差強度を決定する。
誤差強度の推定は任意の回路の実装が容易であり、ノイズ特性の以前の特徴付けを必要としない。
本手法を従来のゼロノイズ外挿法と比較し,新しい手法が期待値のより正確な計算につながることを示す。
提案手法は,現在のハードウェアにおいて特に有効であることが証明され,その短期量子コンピューティングアプリケーションへの適用性を示す。
関連論文リスト
- Application of zero-noise extrapolation-based quantum error mitigation to a silicon spin qubit [0.08603957004874943]
シリコンスピン量子ビットプラットフォーム上でのゼロノイズ外挿による誤差低減手法の実装について報告する。
この技術は超伝導量子ビット、トラップイオン量子ビット、フォトニックプロセッサなどの他のプラットフォームで実証されている。
論文 参考訳(メタデータ) (2024-10-14T09:51:21Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
量子ビット実装のマルチレベル構造から生じる計算部分空間から漏れること。
パラメトリックフラックス変調を用いた超伝導量子ビットの資源効率向上のためのユニバーサルリーク低減ユニットを提案する。
繰り返し重み付け安定化器測定におけるリーク低減ユニットの使用により,検出されたエラーの総数を,スケーラブルな方法で削減できることを実証した。
論文 参考訳(メタデータ) (2023-09-13T16:21:32Z) - Mitigating Quantum Gate Errors for Variational Eigensolvers Using Hardware-Inspired Zero-Noise Extrapolation [0.0]
ゼロノイズ外挿を用いた変分アルゴリズムにおける量子ゲート誤差の軽減法を開発した。
物理量子デバイスにおけるゲートエラーが、異なる量子ビットと量子ビットのペアで不均一に分散されているという事実を利用する。
回路誤差和について, 変動的アプローチにおける推定エネルギーは, ほぼ線形であることがわかった。
論文 参考訳(メタデータ) (2023-07-20T18:00:03Z) - Error mitigation, optimization, and extrapolation on a trapped ion testbed [0.05185707610786576]
ゼロノイズ補間(ZNE)と呼ばれる誤差軽減の形式は、必要なキュービット数を増やすことなく、これらのエラーに対するアルゴリズムの感度を低下させることができる。
本稿では,この誤差軽減手法を変分量子固有解法(VQE)アルゴリズムに統合するための様々な手法について検討する。
本手法の有効性は, デバイスアーキテクチャの適切な実装を選択することによる。
論文 参考訳(メタデータ) (2023-07-13T19:02:39Z) - QuEst: Graph Transformer for Quantum Circuit Reliability Estimation [32.89844497610906]
TorchQuantumと呼ばれるPythonライブラリは、機械学習タスクのためにPQCを構築し、シミュレートし、訓練することができる。
本稿では,回路の忠実度に対するノイズの影響を予測するために,グラフトランスフォーマモデルを提案する。
回路シミュレータと比較すると、予測器は忠実度を推定するための200倍以上のスピードアップを持つ。
論文 参考訳(メタデータ) (2022-10-30T02:35:31Z) - The Accuracy vs. Sampling Overhead Trade-off in Quantum Error Mitigation
Using Monte Carlo-Based Channel Inversion [84.66087478797475]
量子誤差緩和(Quantum error mitigation, QEM)は、変分量子アルゴリズムの計算誤差を低減するための有望な手法の1つである。
我々はモンテカルロサンプリングに基づく実用的なチャネル反転戦略を考察し、さらなる計算誤差を導入する。
計算誤差が誤差のない結果の動的範囲と比較して小さい場合、ゲート数の平方根でスケールすることを示す。
論文 参考訳(メタデータ) (2022-01-20T00:05:01Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
短期量子コンピュータは、小さな分子の基底状態特性を計算することができる。
計算アンサッツの構造と装置ノイズによる誤差が計算にどのように影響するかを示す。
論文 参考訳(メタデータ) (2021-12-31T16:33:10Z) - Realizing Repeated Quantum Error Correction in a Distance-Three Surface
Code [42.394110572265376]
本稿では,エラーに対する極めて高い耐性を有する表面符号を用いた量子誤り訂正法について述べる。
誤差補正サイクルにおいて、論理量子ビットの4つの基数状態の保存を実証する。
論文 参考訳(メタデータ) (2021-12-07T13:58:44Z) - Quasiprobability decompositions with reduced sampling overhead [4.38301148531795]
量子エラー軽減技術は、フォールトトレラントな量子エラー補正を必要とせずに、現在の量子ハードウェアのノイズを低減することができる。
本稿では, 準確率分解を雑音を考慮した方法で選択することを目的とした, 数学的最適化に基づく新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-01-22T19:00:06Z) - Multi-exponential Error Extrapolation and Combining Error Mitigation
Techniques for NISQ Applications [0.0]
量子ハードウェアにおけるノイズは、量子コンピュータの実装における最大の障害である。
誤り補間は、実験的に実装された誤り軽減手法である。
我々はこれを多重指数誤差外挿に拡張し、パウリ雑音下での有効性のより厳密な証明を提供する。
論文 参考訳(メタデータ) (2020-07-02T17:18:47Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Googleの最近の量子超越性実験は、量子コンピューティングがランダムな回路サンプリングという計算タスクを実行する遷移点を示している。
観測された量子ランタイムの利点の制約を、より多くの量子ビットとゲートで検討する。
論文 参考訳(メタデータ) (2020-05-05T20:11:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。