論文の概要: Demonstrating quantum error mitigation on logical qubits
- arxiv url: http://arxiv.org/abs/2501.09079v1
- Date: Wed, 15 Jan 2025 19:00:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-17 15:10:00.190220
- Title: Demonstrating quantum error mitigation on logical qubits
- Title(参考訳): 論理量子ビット上の量子誤差緩和の実証
- Authors: Aosai Zhang, Haipeng Xie, Yu Gao, Jia-Nan Yang, Zehang Bao, Zitian Zhu, Jiachen Chen, Ning Wang, Chuanyu Zhang, Jiarun Zhong, Shibo Xu, Ke Wang, Yaozu Wu, Feitong Jin, Xuhao Zhu, Yiren Zou, Ziqi Tan, Zhengyi Cui, Fanhao Shen, Tingting Li, Yihang Han, Yiyang He, Gongyu Liu, Jiayuan Shen, Han Wang, Yanzhe Wang, Hang Dong, Jinfeng Deng, Hekang Li, Zhen Wang, Chao Song, Qiujiang Guo, Pengfei Zhang, Ying Li, H. Wang,
- Abstract要約: 量子コンピューティングにおける長年の課題は、量子ビットの避けられないノイズを克服する技術を開発することである。
本稿では,実効的な量子誤り軽減手法であるゼロノイズ外挿法(ゼロノイズ外挿法)の応用を実験的に提案する。
- 参考スコア(独自算出の注目度): 18.42082909094174
- License:
- Abstract: A long-standing challenge in quantum computing is developing technologies to overcome the inevitable noise in qubits. To enable meaningful applications in the early stages of fault-tolerant quantum computing, devising methods to suppress post-correction logical failures is becoming increasingly crucial. In this work, we propose and experimentally demonstrate the application of zero-noise extrapolation, a practical quantum error mitigation technique, to error correction circuits on state-of-the-art superconducting processors. By amplifying the noise on physical qubits, the circuits yield outcomes that exhibit a predictable dependence on noise strength, following a polynomial function determined by the code distance. This property enables the effective application of polynomial extrapolation to mitigate logical errors. Our experiments demonstrate a universal reduction in logical errors across various quantum circuits, including fault-tolerant circuits of repetition and surface codes. We observe a favorable performance in multi-round error correction circuits, indicating that this method remains effective when the circuit depth increases. These results advance the frontier of quantum error suppression technologies, opening a practical way to achieve reliable quantum computing in the early fault-tolerant era.
- Abstract(参考訳): 量子コンピューティングにおける長年の課題は、量子ビットの避けられないノイズを克服する技術を開発することである。
フォールトトレラント量子コンピューティングの初期段階において有意義な応用を実現するために、訂正後の論理的失敗を抑制する方法の開発がますます重要になっている。
本研究では,ゼロノイズ外挿(ゼロノイズ外挿法)を最先端超伝導プロセッサの誤差補正回路に適用し,実験的に実証する。
物理量子ビット上のノイズを増幅することにより、回路は、符号距離によって決定される多項式関数に従って、ノイズ強度に予測可能な依存を示す結果を得る。
この性質は、論理的誤りを軽減するために多項式外挿の効果的な応用を可能にする。
本実験は,繰り返しおよび表面符号のフォールトトレラント回路を含む,様々な量子回路における論理誤差の普遍的低減を実証する。
複数ラウンドの誤差補正回路において,回路深度が大きくなると,この手法が有効であることを示す。
これらの結果は量子エラー抑制技術のフロンティアを前進させ、早期のフォールトトレラント時代に信頼性の高い量子コンピューティングを実現するための実践的な方法を開く。
関連論文リスト
- Inverted-circuit zero-noise extrapolation for quantum gate error mitigation [0.0]
本稿では,量子回路で発生する誤差の強度を簡易に推定する手法を提案する。
逆回路を付加し、初期状態の確率を測定することにより、回路の誤差強度を決定する。
提案手法は,現在のハードウェアにおいて特に有効であることが証明され,その短期量子コンピューティングアプリケーションへの適用性を示す。
論文 参考訳(メタデータ) (2024-03-03T20:27:27Z) - Mitigating Quantum Gate Errors for Variational Eigensolvers Using Hardware-Inspired Zero-Noise Extrapolation [0.0]
ゼロノイズ外挿を用いた変分アルゴリズムにおける量子ゲート誤差の軽減法を開発した。
物理量子デバイスにおけるゲートエラーが、異なる量子ビットと量子ビットのペアで不均一に分散されているという事実を利用する。
回路誤差和について, 変動的アプローチにおける推定エネルギーは, ほぼ線形であることがわかった。
論文 参考訳(メタデータ) (2023-07-20T18:00:03Z) - Deep Quantum Error Correction [73.54643419792453]
量子誤り訂正符号(QECC)は、量子コンピューティングのポテンシャルを実現するための鍵となる要素である。
本研究では,新しいエンペンド・ツー・エンドの量子誤りデコーダを効率的に訓練する。
提案手法は,最先端の精度を実現することにより,QECCのニューラルデコーダのパワーを実証する。
論文 参考訳(メタデータ) (2023-01-27T08:16:26Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
本稿では,回路に最も影響を及ぼす量子回路の断面をピンポイントする手法を提案する。
我々は,IBM量子マシン上に実装されたアルゴリズム回路の例に応用して,提案手法の実用性と有効性を示す。
論文 参考訳(メタデータ) (2022-04-12T19:39:31Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
本稿では,量子状態の知識を必要とせず,量子回路の可換性を検証する回路指向対称性検証を提案する。
特に、従来の量子領域形式を回路指向安定化器に一般化するフーリエ時間安定化器(STS)手法を提案する。
論文 参考訳(メタデータ) (2021-12-27T21:15:35Z) - Quantum readout error mitigation via deep learning [2.4936576553283283]
本稿では,量子ハードウェア上での読み出し誤差を低減するためのディープラーニングベースのプロトコルを提案する。
ニューラルネットワークとディープラーニングでは、非線形ノイズを補正することが可能であり、既存の線形反転法では不可能である。
論文 参考訳(メタデータ) (2021-12-07T09:26:57Z) - Mitigating errors by quantum verification and post-selection [0.0]
本稿では,いわゆる認証プロトコルである量子検証に基づく量子誤り軽減手法とポストセレクションを提案する。
提案手法のサンプル複雑性について考察し,騒音の現実的な仮定の下で誤りを緩和する厳密な保証を提供する。
当社の手法では,認証プロトコルの異なる実行環境間で出力状態を異なるものにするため,動作の時間依存も可能としています。
論文 参考訳(メタデータ) (2021-09-29T10:29:39Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
ノイズチャネルの多くの用途でメッセージを確実に送信するために、回路をエンコードしてデコードする。
すべての量子チャネル$T$とすべての$eps>0$に対して、以下に示すゲートエラー確率のしきい値$p(epsilon,T)$が存在し、$C-epsilon$より大きいレートはフォールトトレラント的に達成可能である。
我々の結果は、遠方の量子コンピュータが高レベルのノイズの下で通信する必要があるような、大きな距離での通信やオンチップでの通信に関係している。
論文 参考訳(メタデータ) (2020-09-15T15:10:50Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Googleの最近の量子超越性実験は、量子コンピューティングがランダムな回路サンプリングという計算タスクを実行する遷移点を示している。
観測された量子ランタイムの利点の制約を、より多くの量子ビットとゲートで検討する。
論文 参考訳(メタデータ) (2020-05-05T20:11:53Z) - Deterministic correction of qubit loss [48.43720700248091]
量子ビットの損失は、大規模かつフォールトトレラントな量子情報プロセッサに対する根本的な障害の1つである。
トポロジカル曲面符号の最小インスタンスに対して、量子ビット損失検出と補正の完全なサイクルの実装を実験的に実証した。
論文 参考訳(メタデータ) (2020-02-21T19:48:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。