ICLN: Input Convex Loss Network for Decision Focused Learning
- URL: http://arxiv.org/abs/2403.01875v1
- Date: Mon, 4 Mar 2024 09:31:56 GMT
- Title: ICLN: Input Convex Loss Network for Decision Focused Learning
- Authors: Haeun Jeon, Hyunglip Bae, Minsu Park, Chanyeong Kim, Woo Chang Kim
- Abstract summary: In decision-making problem under uncertainty, predicting unknown parameters is often considered independent of the optimization part.
We propose Input Convex Loss Network (ICLN), a novel global surrogate loss which can be implemented in a general DFL paradigm.
ICLN learns task loss via Input Convex Neural Networks which is guaranteed to be convex for some inputs, while keeping the global structure for the other inputs.
- Score: 0.562479170374811
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In decision-making problem under uncertainty, predicting unknown parameters
is often considered independent of the optimization part. Decision-focused
Learning (DFL) is a task-oriented framework to integrate prediction and
optimization by adapting predictive model to give better decision for the
corresponding task. Here, an inevitable challenge arises when computing
gradients of the optimal decision with respect to the parameters. Existing
researches cope this issue by smoothly reforming surrogate optimization or
construct surrogate loss function that mimic task loss. However, they are
applied to restricted optimization domain or build functions in a local manner
leading a large computational time. In this paper, we propose Input Convex Loss
Network (ICLN), a novel global surrogate loss which can be implemented in a
general DFL paradigm. ICLN learns task loss via Input Convex Neural Networks
which is guaranteed to be convex for some inputs, while keeping the global
structure for the other inputs. This enables ICLN to admit general DFL through
only a single surrogate loss without any sense for choosing appropriate
parametric forms. We confirm effectiveness and flexibility of ICLN by
evaluating our proposed model with three stochastic decision-making problems.
Related papers
- Solver-Free Decision-Focused Learning for Linear Optimization Problems [6.305123652677644]
In many real-world scenarios, the parameters of the optimization problem are not known a priori and must be predicted from contextual features.<n>This gives rise to predict-then-optimize problems, where a machine learning model predicts problem parameters that are then used to make decisions via optimization.<n>We propose a solver-free training method that exploits the geometric structure of linear optimization to enable efficient training with minimal degradation in solution quality.
arXiv Detail & Related papers (2025-05-28T10:55:16Z) - Online Decision-Focused Learning [63.83903681295497]
Decision-focused learning (DFL) is an increasingly popular paradigm for training predictive models whose outputs are used in decision-making tasks.<n>We investigate DFL in dynamic environments where the objective function does not evolve over time.<n>We establish bounds on the expected dynamic regret, both when decision space is a simplex and when it is a general bounded convex polytope.
arXiv Detail & Related papers (2025-05-19T10:40:30Z) - Efficient Split Federated Learning for Large Language Models over Communication Networks [45.02252893286613]
Fine-tuning pre-trained large language models (LLMs) in a distributed manner poses significant challenges on resource-constrained edge networks.<n>We propose SflLLM, a novel framework that integrates split federated learning with parameter-efficient fine-tuning techniques.<n>By leveraging model splitting and low-rank adaptation (LoRA), SflLLM reduces the computational burden on edge devices.
arXiv Detail & Related papers (2025-04-20T16:16:54Z) - Decentralized Nonconvex Composite Federated Learning with Gradient Tracking and Momentum [78.27945336558987]
Decentralized server (DFL) eliminates reliance on client-client architecture.
Non-smooth regularization is often incorporated into machine learning tasks.
We propose a novel novel DNCFL algorithm to solve these problems.
arXiv Detail & Related papers (2025-04-17T08:32:25Z) - Gen-DFL: Decision-Focused Generative Learning for Robust Decision Making [48.62706690668867]
Decision-focused generative learning (Gen-DFL) is a novel framework that leverages generative models to adaptively model uncertainty and improve decision quality.
The paper shows, theoretically, that Gen-DFL achieves improved worst-case performance bounds compared to traditional DFL.
arXiv Detail & Related papers (2025-02-08T06:52:11Z) - Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer [52.09480867526656]
We identify the source of misalignment as a form of distributional shift and uncertainty in learning human preferences.
To mitigate overoptimization, we first propose a theoretical algorithm that chooses the best policy for an adversarially chosen reward model.
Using the equivalence between reward models and the corresponding optimal policy, the algorithm features a simple objective that combines a preference optimization loss and a supervised learning loss.
arXiv Detail & Related papers (2024-05-26T05:38:50Z) - Two-Stage ML-Guided Decision Rules for Sequential Decision Making under Uncertainty [55.06411438416805]
Sequential Decision Making under Uncertainty (SDMU) is ubiquitous in many domains such as energy, finance, and supply chains.
Some SDMU are naturally modeled as Multistage Problems (MSPs) but the resulting optimizations are notoriously challenging from a computational standpoint.
This paper introduces a novel approach Two-Stage General Decision Rules (TS-GDR) to generalize the policy space beyond linear functions.
The effectiveness of TS-GDR is demonstrated through an instantiation using Deep Recurrent Neural Networks named Two-Stage Deep Decision Rules (TS-LDR)
arXiv Detail & Related papers (2024-05-23T18:19:47Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - Learning k-Level Structured Sparse Neural Networks Using Group Envelope Regularization [4.0554893636822]
We introduce a novel approach to deploy large-scale Deep Neural Networks on constrained resources.
The method speeds up inference time and aims to reduce memory demand and power consumption.
arXiv Detail & Related papers (2022-12-25T15:40:05Z) - A Surrogate Objective Framework for Prediction+Optimization with Soft
Constraints [29.962390392493507]
Decision-focused prediction approaches, such as SPO+ and direct optimization, have been proposed to fill this gap.
This paper proposes a novel analytically differentiable surrogate objective framework for real-world linear and semi-definite negative quadratic programming problems.
arXiv Detail & Related papers (2021-11-22T17:09:57Z) - Learning MDPs from Features: Predict-Then-Optimize for Sequential
Decision Problems by Reinforcement Learning [52.74071439183113]
We study the predict-then-optimize framework in the context of sequential decision problems (formulated as MDPs) solved via reinforcement learning.
Two significant computational challenges arise in applying decision-focused learning to MDPs.
arXiv Detail & Related papers (2021-06-06T23:53:31Z) - Learning to Solve the AC-OPF using Sensitivity-Informed Deep Neural
Networks [52.32646357164739]
We propose a deep neural network (DNN) to solve the solutions of the optimal power flow (ACOPF)
The proposed SIDNN is compatible with a broad range of OPF schemes.
It can be seamlessly integrated in other learning-to-OPF schemes.
arXiv Detail & Related papers (2021-03-27T00:45:23Z) - Backpropagation-Free Learning Method for Correlated Fuzzy Neural
Networks [2.1320960069210475]
This paper proposes a novel stepwise learning approach based on estimating desired premise parts' outputs.
It does not require backpropagating the output error to learn the premise parts' parameters.
It is successfully applied to real-world time-series prediction and regression problems.
arXiv Detail & Related papers (2020-11-25T20:56:05Z) - Extracting Optimal Solution Manifolds using Constrained Neural
Optimization [6.800113407368289]
Constrained Optimization solution algorithms are restricted to point based solutions.
We present an approach for extracting optimal sets as approximate, where unmodified non-informed constraints are defined.
arXiv Detail & Related papers (2020-09-13T15:37:44Z) - Regularized Online Allocation Problems: Fairness and Beyond [7.433931244705934]
We introduce the emphregularized online allocation problem, a variant that includes a non-linear regularizer acting on the total resource consumption.
In this problem, requests repeatedly arrive over time and, for each request, a decision maker needs to take an action that generates a reward and consumes resources.
The objective is to simultaneously maximize additively separable rewards and the value of a non-separable regularizer subject to the resource constraints.
arXiv Detail & Related papers (2020-07-01T14:24:58Z) - Optimizing Wireless Systems Using Unsupervised and
Reinforced-Unsupervised Deep Learning [96.01176486957226]
Resource allocation and transceivers in wireless networks are usually designed by solving optimization problems.
In this article, we introduce unsupervised and reinforced-unsupervised learning frameworks for solving both variable and functional optimization problems.
arXiv Detail & Related papers (2020-01-03T11:01:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.