Exponential Expressivity of ReLU$^k$ Neural Networks on Gevrey Classes with Point Singularities
- URL: http://arxiv.org/abs/2403.02035v2
- Date: Fri, 14 Jun 2024 14:02:12 GMT
- Title: Exponential Expressivity of ReLU$^k$ Neural Networks on Gevrey Classes with Point Singularities
- Authors: Joost A. A. Opschoor, Christoph Schwab,
- Abstract summary: We prove exponential emulation rates in Sobolev spaces in terms of the number of neurons.
On shape-regular, simplicial partitions of polytopal domains $mathrmD$, both the number of neurons and the number of nonzero parameters are proportional to the number of degrees of freedom of the finite element space.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We analyze deep Neural Network emulation rates of smooth functions with point singularities in bounded, polytopal domains $\mathrm{D} \subset \mathbb{R}^d$, $d=2,3$. We prove exponential emulation rates in Sobolev spaces in terms of the number of neurons and in terms of the number of nonzero coefficients for Gevrey-regular solution classes defined in terms of weighted Sobolev scales in $\mathrm{D}$, comprising the countably-normed spaces of I.M. Babu\v{s}ka and B.Q. Guo. As intermediate result, we prove that continuous, piecewise polynomial high order (``$p$-version'') finite elements with elementwise polynomial degree $p\in\mathbb{N}$ on arbitrary, regular, simplicial partitions of polyhedral domains $\mathrm{D} \subset \mathbb{R}^d$, $d\geq 2$ can be exactly emulated by neural networks combining ReLU and ReLU$^2$ activations. On shape-regular, simplicial partitions of polytopal domains $\mathrm{D}$, both the number of neurons and the number of nonzero parameters are proportional to the number of degrees of freedom of the finite element space, in particular for the $hp$-Finite Element Method of I.M. Babu\v{s}ka and B.Q. Guo.
Related papers
- Neural network learns low-dimensional polynomials with SGD near the information-theoretic limit [75.4661041626338]
We study the problem of gradient descent learning of a single-index target function $f_*(boldsymbolx) = textstylesigma_*left(langleboldsymbolx,boldsymbolthetarangleright)$ under isotropic Gaussian data.
We prove that a two-layer neural network optimized by an SGD-based algorithm learns $f_*$ of arbitrary link function with a sample and runtime complexity of $n asymp T asymp C(q) cdot d
arXiv Detail & Related papers (2024-06-03T17:56:58Z) - Noncompact uniform universal approximation [0.0]
The universal approximation theorem is generalised to uniform convergence on the (noncompact) input space $mathbbRn$.
All continuous functions that vanish at infinity can be uniformly approximated by neural networks.
arXiv Detail & Related papers (2023-08-07T08:54:21Z) - Quantum and classical low-degree learning via a dimension-free Remez
inequality [52.12931955662553]
We show a new way to relate functions on the hypergrid to their harmonic extensions over the polytorus.
We show the supremum of a function $f$ over products of the cyclic group $exp(2pi i k/K)_k=1K$.
We extend to new spaces a recent line of work citeEI22, CHP, VZ22 that gave similarly efficient methods for learning low-degrees on hypercubes and observables on qubits.
arXiv Detail & Related papers (2023-01-04T04:15:40Z) - On the Sample Complexity of Two-Layer Networks: Lipschitz vs.
Element-Wise Lipschitz Activation [20.70453775428433]
We investigate the sample complexity of bounded two-layer neural networks using different activation functions.
We prove that if $sigma$ is element-wise, then the sample complexity of $mathcalH$ has only logarithmic dependency in width.
arXiv Detail & Related papers (2022-11-17T16:27:15Z) - Shallow neural network representation of polynomials [91.3755431537592]
We show that $d$-variables of degreeR$ can be represented on $[0,1]d$ as shallow neural networks of width $d+1+sum_r=2Rbinomr+d-1d-1d-1[binomr+d-1d-1d-1[binomr+d-1d-1d-1[binomr+d-1d-1d-1d-1[binomr+d-1d-1d-1d-1
arXiv Detail & Related papers (2022-08-17T08:14:52Z) - Learning a Single Neuron with Adversarial Label Noise via Gradient
Descent [50.659479930171585]
We study a function of the form $mathbfxmapstosigma(mathbfwcdotmathbfx)$ for monotone activations.
The goal of the learner is to output a hypothesis vector $mathbfw$ that $F(mathbbw)=C, epsilon$ with high probability.
arXiv Detail & Related papers (2022-06-17T17:55:43Z) - Geometry of the Loss Landscape in Overparameterized Neural Networks:
Symmetries and Invariances [9.390008801320024]
We show that adding one extra neuron to each is sufficient to connect all previously discrete minima into a single manifold.
We show that the number of symmetry-induced critical subspaces dominates the number of affine subspaces forming the global minima manifold.
arXiv Detail & Related papers (2021-05-25T21:19:07Z) - Exponential ReLU Neural Network Approximation Rates for Point and Edge
Singularities [0.0]
We prove exponential expressivity with stable ReLU Neural Networks (ReLU NNs) in $H1(Omega)$ for weighted analytic function classes in certain polytopal domains.
The exponential approximation rates are shown to hold in space dimension $d = 2$ on Lipschitz polygons with straight sides, and in space dimension $d=3$ on Fichera-type polyhedral domains with plane faces.
arXiv Detail & Related papers (2020-10-23T07:44:32Z) - Learning Over-Parametrized Two-Layer ReLU Neural Networks beyond NTK [58.5766737343951]
We consider the dynamic of descent for learning a two-layer neural network.
We show that an over-parametrized two-layer neural network can provably learn with gradient loss at most ground with Tangent samples.
arXiv Detail & Related papers (2020-07-09T07:09:28Z) - Complexity of Finding Stationary Points of Nonsmooth Nonconvex Functions [84.49087114959872]
We provide the first non-asymptotic analysis for finding stationary points of nonsmooth, nonsmooth functions.
In particular, we study Hadamard semi-differentiable functions, perhaps the largest class of nonsmooth functions.
arXiv Detail & Related papers (2020-02-10T23:23:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.