論文の概要: Recursive Quantum Relaxation for Combinatorial Optimization Problems
- arxiv url: http://arxiv.org/abs/2403.02045v1
- Date: Mon, 4 Mar 2024 13:48:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-06 18:36:36.759441
- Title: Recursive Quantum Relaxation for Combinatorial Optimization Problems
- Title(参考訳): 組合せ最適化問題に対する再帰的量子緩和
- Authors: Ruho Kondo, Yuki Sato, Rudy Raymond, Naoki Yamamoto
- Abstract要約: 既存の量子最適化手法のいくつかは、最適量子状態から最も高い確率で測定される二項解を求める解法に統一可能であることを示す。
テンソルネットワーク技術を用いたMAX-CUT問題における数百ノードの標準ベンチマークグラフの実験は、RQRAOがゴーマン-ウィリアムソン法より優れ、最先端の古典的解法に匹敵することを示した。
- 参考スコア(独自算出の注目度): 3.6108379127881176
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum optimization methods use a continuous degree-of-freedom of quantum
states to heuristically solve combinatorial problems, such as the MAX-CUT
problem, which can be attributed to various NP-hard combinatorial problems.
This paper shows that some existing quantum optimization methods can be unified
into a solver that finds the binary solution that is most likely measured from
the optimal quantum state. Combining this finding with the concept of quantum
random access codes (QRACs) for encoding bits into quantum states on fewer
qubits, we propose an efficient recursive quantum relaxation method called
recursive quantum random access optimization (RQRAO) for MAX-CUT. Experiments
on standard benchmark graphs with several hundred nodes in the MAX-CUT problem,
conducted in a fully classical manner using a tensor network technique, show
that RQRAO outperforms the Goemans--Williamson method and is comparable to
state-of-the-art classical solvers. The codes will be made available soon.
- Abstract(参考訳): 量子最適化法は、量子状態の連続的な自由度を用いて、様々なnp-ハードコンビネート問題に起因するマックスカット問題のような組合せ問題をヒューリスティックに解く。
本稿では,既存の量子最適化手法のいくつかを解法に統一し,最適量子状態から推定される2値解を求めることができることを示す。
この発見と、より少ない量子ビット上の量子状態にビットを符号化する量子ランダムアクセス符号(QRAC)の概念を組み合わせることで、MAX-CUTのための再帰的量子ランダムアクセス最適化(RQRAO)と呼ばれる効率的な再帰的量子緩和法を提案する。
テンソルネットワーク技術を用いたMAX-CUT問題における数百ノードの標準ベンチマークグラフの実験は、RQRAOがゴーマン-ウィリアムソン法より優れ、最先端の古典的解法に匹敵することを示した。
コードはもうすぐ利用可能になる。
関連論文リスト
- Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
最近提案された量子アルゴリズムarXiv:2206.14999は半定値プログラミング(SDP)に基づいている
SDPにインスパイアされた量子アルゴリズムを2乗和に一般化する。
この結果から,本アルゴリズムは大きな問題に適応し,最もよく知られた古典学に近似することが示唆された。
論文 参考訳(メタデータ) (2024-08-14T19:04:13Z) - Solving non-native combinatorial optimization problems using hybrid
quantum-classical algorithms [0.0]
組合せ最適化は、物流から金融まで幅広い分野に適用可能な、困難な問題である。
量子コンピューティングは、様々なアルゴリズムを用いてこれらの問題を解決するために使われてきた。
この研究は、量子と古典のリソースをハイブリッドなアプローチで統合することで、これらの課題を克服する枠組みを提示している。
論文 参考訳(メタデータ) (2024-03-05T17:46:04Z) - A Universal Quantum Algorithm for Weighted Maximum Cut and Ising
Problems [0.0]
本稿では,二項問題の近似解を計算するためのハイブリッド量子古典アルゴリズムを提案する。
我々は、重み付き最大カットまたはイジング・ハミルトン演算子をブロック符号化するユニタリおよびエルミート演算子を実装するために浅深さ量子回路を用いる。
この作用素の変動量子状態への期待を測定すると、量子系の変動エネルギーが得られる。
論文 参考訳(メタデータ) (2023-06-10T23:28:13Z) - NISQ-compatible approximate quantum algorithm for unconstrained and
constrained discrete optimization [0.0]
本稿では,振幅符号化を用いたハードウェア効率の高い回路に対する近似勾配型量子アルゴリズムを提案する。
目的関数にペナルティ項を加えることなく, 単純な線形制約を回路に直接組み込むことができることを示す。
論文 参考訳(メタデータ) (2023-05-23T16:17:57Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
単一画像超解像(SISR)問題を解くために,量子コンピューティングに基づくアルゴリズムを提案する。
提案したAQCアルゴリズムは、SISRの精度を維持しつつ、古典的なアナログよりも向上したスピードアップを実現する。
論文 参考訳(メタデータ) (2023-04-18T11:57:15Z) - The Role of Entanglement in Quantum-Relaxation Based Optimization
Algorithms [4.00916638804083]
量子ランダムアクセスコード(QRAC)は、バイナリ最適化の複数の変数を1量子ビットでエンコードする。
この結果から,QRAOは量子コンピュータに制限された二項最適化問題の解決可能なインスタンスをスケールできるだけでなく,量子絡み合いの恩恵を受けることが示唆された。
論文 参考訳(メタデータ) (2023-02-01T13:24:51Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
量子アルゴリズムにおける最悪のケースと平均ケースの削減を設計する問題について検討する。
量子アルゴリズムの明示的で効率的な変換は、入力のごく一部でのみ正し、全ての入力で正しくなる。
論文 参考訳(メタデータ) (2022-12-06T22:01:49Z) - Quantum Goemans-Williamson Algorithm with the Hadamard Test and
Approximate Amplitude Constraints [62.72309460291971]
本稿では,n+1$ qubitsしか使用しないGoemans-Williamsonアルゴリズムの変分量子アルゴリズムを提案する。
補助量子ビット上で適切にパラメータ化されたユニタリ条件として目的行列を符号化することにより、効率的な最適化を実現する。
各種NPハード問題に対して,Goemans-Williamsonアルゴリズムの量子的効率的な実装を考案し,提案プロトコルの有効性を実証する。
論文 参考訳(メタデータ) (2022-06-30T03:15:23Z) - QAOA-in-QAOA: solving large-scale MaxCut problems on small quantum
machines [81.4597482536073]
量子近似最適化アルゴリズム(QAOAs)は、量子マシンのパワーを利用し、断熱進化の精神を継承する。
量子マシンを用いて任意の大規模MaxCut問題を解くためにQAOA-in-QAOA(textQAOA2$)を提案する。
提案手法は,大規模最適化問題におけるQAOAsの能力を高めるために,他の高度な戦略にシームレスに組み込むことができる。
論文 参考訳(メタデータ) (2022-05-24T03:49:10Z) - Efficiently Solve the Max-cut Problem via a Quantum Qubit Rotation
Algorithm [7.581898299650999]
我々はQQRA(Quantum Qubit Rotation Algorithm)という単純なアルゴリズムを導入する。
最大カット問題の近似解は 1 に近い確率で得られる。
我々は、よく知られた量子近似最適化アルゴリズムと古典的なゲーマン・ウィリアムソンアルゴリズムと比較する。
論文 参考訳(メタデータ) (2021-10-15T11:19:48Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。